MITES OF THE GENUS PROCTOELAPS BERLESE, 1923
(ACARI: MESOSTIGMATA: MELICHRARIDAE)
ASSOCIATED WITH BARK BEETLES IN ASIAN RUSSIA

Viacheslav A. Trach1* and Alexander A. Khaustov2

1I.I. Mechnikov Odessa National University, Odessa, Ukraine
2Tyumen State University, Tyumen, Russia
*corresponding author; e-mail: vatrach@gmail.com

ABSTRACT: Six mite species of the genus Proctolaelaps Berlese, 1923 (Acari: Mesostigmata: Melicharidae) are recorded from bark beetles and in their galleries in Asian Russia. One of them, Proctolaelaps dendroctoni Lindquist and Hunter, 1965, is found for the first time in Palaearctic; its female is redescribed. Proctolaelaps hystricoides Lindquist and Hunter, 1965, P. hystrix (Vitzthum, 1923) and P. scolyti Evans (1958) are recorded for the first time in Russia. A key to females of the genus Proctolaelaps, associated with subcortical beetles, is provided.

KEYWORDS: Parasitiformes, Monogynaspida, Ascoidea, Scolytinae, systematics, new species, phoresy.

INTRODUCTION

The mite family Melicharidae includes 11 genera and more than 200 species (Moraes et al. 2016). Melicharids are known from soil, litter, plants (i.e., their flowers and fruits), rotten wood, stored products, seaweeds, colonies of fruit flies, on cockroaches, beetles, moths, ants, bees, bumblebees and their nests, birds, small mammals and their nests, corps, and excrements (e.g., De Leon 1963; Westerboer 1963; Treat and Niederman 1967; Bregetova 1977; Fain et al. 1977; Karg 1985, 1988a; Hanekom et al. 1988; O’Connor et al. 1991; Faraji 2011; Halliday 2001; Mašán et al. 2013; Moraes et al. 2015, 2016). Currently, the largest cosmopolitan melicharid genus Proctolaelaps Berlese, 1923 includes about 140 described species (Abo-Shnaf and Moraes 2016; Literakova et al. 2016; Moraes et al. 2016; Rueda-Ramírez et al. 2016). About 25 species of the genus Proctolaelaps are phoretic on beetles (cossonines, bark beetles, stag beetles, sap beetles, erotylids, scarab beetles, leaf beetles, silphids, and carabid beetles). These mites are especially common on subcortical beetles (Vitzthum 1923; Evans 1958; Samšíňák 1960; Hirschmann 1962, 1972; Costa 1963; Westerboer 1963; Lindquist and Hunter 1965; Ishikawa 1968; Lindquist 1971; Wisniewski 1980; Karg 1988b; Stone 1988; Mašán 1998; Ma et al. 2003; Gwiazdowicz 2007; personal observations).

Thirteen species of the genus Proctolaelaps have been reported from Russia: P. arctorotundus Nikolsky, 1984; P. bickleyi (Bram, 1956); P. bombophilus (Westerboer, 1963); P. cossi (Dugès, 1834); P. fiseri Samšíňák, 1960; P. jueraedus (Schweizer, 1949); P. longisetosus (Postner, 1963); P. ornatus (Postner, 1963); P. parvanalis (Thor, 1930); P. pseudoisneri Nikolsky, 1984; P. pygmaeus (Müller, 1859); P. sibiriensis (Davydova, 1988); P. xyloteri Samšíňák, 1960 (Bregetova 1977; Petrova 1982; Nikolsky 1984; Davydova and Nikolsky 1986; Andreev, 1988; Davydova 1988; Klimov 1998; Marchenko 2002, 2012, 2017; Maslov and Matusevich 2008; Mašán 2009, 2011, 2012; Khaustov et al. 2016).

During the study of mites, associated with bark beetles in Asian Russia (Siberia and the Far East), six species of the genus Proctolaelaps were recorded on bark beetles and in bark beetle galleries. The aims of this paper are the following: to present the new records of phoretic mites of the genus Proctolaelaps; to redescribe (with an extended set of measurements) a female of the poorly known species Proctolaelaps dendroctoni Lindquist and Hunter (1965), and to provide a key to the subcortical beetle-associated Proctolaelaps species.

MATERIAL AND METHODS

Bark beetles were collected from their galleries using an aspirator, after which they were placed into vials with 96% ethanol. The beetles, as well as the mites obtained from the beetles and their galleries, were examined with the aid of the stereomicroscope Discovery V8 (Carl Zeiss, Germany). Most of the collected mites were mounted in a Hoyer’s medium for the purposes of light-microscopy. The morphology of mites was studied with the help of the Axio Imager A2 (Carl Zeiss, Germany) compound microscope with the phase-contrast and the DIC objectives. Mikmed-1 Lomo microscope, equipped with a binocular head AU-12 and an ocular micrometer AM9-2, was also used.
SEM micrographs were taken with the aid of a JEOL–JSM-6510LV SEM microscope. The morphological terminology generally follows Evans and Till (1979). All pore-like structures, glandular openings (solenostomes), and poroids (lyrifissures) are designated as “pores”. Dorsal and ventral setae were labelled according to the systems of Lindquist and Evans (1965), and Lindquist (1994). Palpal and leg chaetotaxy follows Evans (1963a, b, 1969).

Lengths of shields were measured from the anterior to posterior shield margins along the midline. The length of the second cheliceral segment was measured from their base to the apex of the fixed digit. The length of legs was taken from the base of the coxa to the apex of the tarsus, excluding the ambulacrum. The measurements are given in micrometers (μm). The material is deposited in the Zoological Museum of Tyumen State University (Tyumen, Russia) and in the collections of the Department of Zoology in I.I. Mechnikov Odessa National University (Odessa, Ukraine).

SYSTEMATICS

Family Melicharidae

Genus Proctolaelaps Berlese, 1923

Type species: Proctolaelaps productus Berlese, 1923, by monotypy

PROCTOELAEPS DENDROCTONI

Lindquist and Hunter, 1965

Figs. 1–2, 3a, 4

The type series of *P. dendroctoni* includes specimens from the USA (Georgia, Louisiana and Texas). The mites were found in galleries of bark beetles *Dendroctonus frontalis* Zimmerman, 1868, *Lps avulsus* (Eichhoff, 1868), *I. calligraphus* (Germar, 1824) and on the adult *D. frontalis* (Lindquist and Hunter 1965). Kinn (1983) studied the life cycle of *P. dendroctoni* and quoted Wilson (1980), according to whom this mite species is usually phoretic on beetle associates of scolytids. This observation is especially applicable to the tenebrionid *Corticeus glaber* (LeConte, 1878)—a facultative predator of bark beetles. We have also recorded the phoresy of this species on *Corticeus* sp. (Fig. 4). This is a new record for the fauna of the Palearctic.

Diagnosis. Dorsal shield reticulate, smooth only in center of podonotal region. Female with 42 pairs of setae on dorsal shield. Length of setae in *J*-series does not exceed half distance to base of next posterior seta. Pre-sternal area without platelets. Sternal shield mainly reticulate, smooth posteriorly, pattern of lines in central part primarily transverse. Anus of middle size, located in central part of anal shield. Soft cuticle around of anal shield in female with 13 pairs of setae. Anterior margin of epistome narrowly rounded, denticulate. Deutosternum in female with 6 rows of denticles, rows 1–5 connected by lateral lines, anterior 4 rows each with 1–3 denticles, 5th row widened, with 3–5 denticles, 6th row free, widened, with 4–5 denticles, 7th row absent. Deutosternum in male with 1–2 unconnected denticles in area of 7th row. Corniculi asymmetrical. Fixed cheliceral digit in female with 5–7 teeth, movable digit with 2 teeth. Fixed cheliceral digit in male with 5–7 teeth, movable digit edentate, with only apical tooth. Leg chaetotactic formulae normal for genus, leg segments without macrosetae, some setae on tarsi II–IV thickened.

Redescription. Female (n=6; Figs. 1, 2, 3a, 4b). *Idiosomal dorsum* (Figs. 1a, 2a, 4). Dorsal shield oval; 370–395 long and 218–231 maximum width at r5 level; smooth in central part of podonotal region, other surface reticulate, pattern of lines between setae J2 and J4 primarily transverse; holotrichous, with 42 pairs of setae (j1–j6, z1–z6, s1–s6, r2–r6, J1–J5, Z1–Z5, S1–S5, R1–R4) and 22 pairs of distinguishable pores. Soft cuticle with 2 pairs of setae of UR-series and setae R5. All dorsal setae simple, needle-like; measurements of some setae: j1 18–21, j6 12–14, J5 9–10, Z5 32–37, S3 20–21.

Idiosomal venter (Figs. 2a, 3a). Tritosternum with trapezoidal base, 11–12 long, 9–10 wide at base, laciniae pilose, fused for about half of total length (21–24), their free parts 24–29 long. Pre-sternal area transversely lineate, without evident platelets. Sternal shield fused with endopodal platelets of coxae I/II and coxae II/III; 82–86 long along midline, 122–130 wide at level of endopodal platelets of coxae I/II, 120–134 wide at level of endopodal platelets of coxae II/III, 78–82 wide in narrowest place at about mid-level of coxae II; with 3 pairs of setae (st1–st3; 19–21 long) and 2 pairs of pores (iv1, iv2), pore iv1 positioned posteriord seta st1, pore iv2 positioned between setae st2 and st3; sternal shield rounded posteriorly; mainly reticulate, but smooth in posterior part, pattern of ornamentation lines in central area primarily transverse (Fig. 3a). Setae st4 and pores iv3 located on metasternal platelets, length st4 16–18. Epignyal shield reticulate; its anterior margin broadly rounded, overlap-
ping posterior sternal shield area, widened behind level of \(st5 \) and convex posteriorly; 141–147 long, with greatest width of anterior part 78–80, greatest width of posterior part 71–78; bearing setae \(st5 \); length \(st5 \) 16–17; genital pores placed off the shield. Postgenital platelets absent. Free endopodal plates strongly formed between coxae III and IV. Anal shield oval, with anterior margin rounded, slightly protuberant, posterior margin truncate; 67–71 long and 55–57 wide; reticulate; anus located in centre of shield, anal opening 21–23 long; cribrum well developed; one pair of pores present; length of
Fig. 2. *Proctolaelaps dendroctoni* Lindquist and Hunter, 1965, female: a—idiosoma, ventral view; b—leg IV, ventral view. Scale bars 100 μm.
para-anal setae 14–15, length of post-anal seta
23–26. Posetriad coxae IV 2 pairs of elongate meta-
podal platelets present; the larger platelet 14–18
long, 5–6 wide; the smaller platelet 7–8 long, 3–4
wide. Soft cuticle around of anal shield with, 13
pairs of setae (JV1–JV5, ZV1–ZV5, SV2, 2 setae of
UR-series) and 2 pairs of distinguishable pores. All
ventral setae simple; length of setae on soft cuticle
(excluding JV5) 12–19, JV5 21–22. Exopodal plate-
lets of coxae II–III, coxae III–IV and platelet en-
veloping coxa IV posteriorly fused. Peritrematal
shields fused with dorsal shield at transversal level
between setae s1 and s2, free from exopodal strips,
with 3 pairs of distinguishable pores; peritreme
extending forward to level of z1. Spermathecal ap-
paratus not distinguishable.

Gnathosoma (Figs. 1b–e). Anterior margin of
epistome narrowly rounded, denticulate (Fig. 1b).
Subcapitulum 77–81 wide at widest level. Deuto-
sternum with 6 rows of denticles, rows 1–5 con-
nected; anterior 4 rows each with 1–3 denticles, 5th row widened, with 3–5 denticles, 6th row free, widened, with 4–5 denticles, on place of 7th row located fragments of concave line (Fig. 1c). Hypostome with 4 pairs of simple setae; palpcoxal seta (pc) 18–20, hp1 19–20, hp2 15–16, hp3 25–27.

Corniculi entire, 29–34 long, 8–11 wide, asymmetrical (one always larger than other), horn-like, sclerotized; internal malae slender, shorter than corniculi; salivary styli broad narrowing distally. Palp length from trochanter to tarsus 109–113; setal formula: 2–5–6–15–16; palpfemoral seta al and palpgenual seta al2 spatulate, palpgenual seta al1 weakly spatulate, palptarsal apotele 2-tined, other setae simple (Figs. 1c, d). Second cheliceral segment length 72–74, movable digit length 28–30. Fixed cheliceral digit with 5–7 teeth and membranous lobe; movable digit with 2 teeth and ventral projection (Fig. 1e).

Legs (Figs. 1f, 2b). Lengths: I 290–302, II 244–256, III 256–269, IV 336–353. Leg chaetotactic formulae normal for genus: leg I: coxa 2, trochanter 6 (1 0/1 1/2 1), femur 12 (2 3/1 2/2 2), genu 13 (2 3/2 3/1 2), tibia 13 (2 3/2 3/1 2); leg II: coxa 2, trochanter 5 (1 0/1 0/2 1), femur 11 (2 3/1 2/2 1), genu 11 (2 3/1 2/1 2), tibia 10 (2 2/1 2/1 2), tarsus 18 (3 3/2 1/2 1); leg III: coxa 2, trochanter 5 (1 0/1 0/2 1), femur 6 (1 2/1 2/1 1), genu 9 (2 2/1 2/1 1), tibia 8 (2 1/1 2/1 1), tarsus 18 (3 3/2 1/2 1); leg IV: coxa 1, trochanter 5 (1 0/1 0/2 1), femur 6 (1 2/1 1/0 1), genu 9 (2 2/1 3/0 1), tibia 10 (2 1/1 3/1 2), tarsus 18 (3 3/2 1/2 1/3 2). Leg segments without macrosetae (Fig. 2b); all setae smooth; setae al1, av1, av2, mv, pv1, pv2, pl1 on tarsi II–IV thickened, especially on tarsus II (Fig. 1f).

Material examined. One female, Russia, Primorsky Kray, 48°28′20.8″ N; 133°33′25.3″ E, 26 August 2016, on Corticeus sp. in galleries of Ips acuminatus (Gyllenhal, 1827) under bark of Korean pine (Pinus koraiensis), leg. A.A. Khaustov; 1 male, the same data, in galleries of Ips acuminatus.

Also, the species is registered in Crimea: 4 females, 3 males, Yalta, vicinity of Nikita settlement, 44°31′ N, 34°14′ E, 2 March 1996, on Ips sexdentatus (Börner, 1776) (Coleoptera: Curculionidae: Scolytinae); 2 females, same locality, 9 May 1996, on Corticeus pini (Panzera, 1799) (Coleoptera: Tenebrionidae).

PROCTOLAELAPS FISERI SAMŠIŇÁK, 1960

Fig. 3b

This species is widely distributed in the Holartic, where it is associated with various subcortical beetles, especially bark beetles (Samšiňák 1960; Westerboer 1963; Lindquist and Hunter 1965; Salmate 2007; Gwiazdowicz 2008; Hofstetter et al. 2015). In addition, it was recorded in European Russia in the galleries of Hylastes opacus Erichson, 1836, Tomicus piniperda (Linnaeus, 1758), Ips typographus Linnaeus, 1758, Pityogenes chlorographus (Linnaeus, 1761) (Andreev 1988; Maslov and Matusevich 2008) and in Western Siberia (Davydova and Nikolsky 1986). The errone-
ous identification of *P. fiseri* on *Pityogenes chalcographus* from Western Siberia by Khaustov et al. (2016) is corrected here to *Proctolaelaps hystricoides* Lindquist and Hunter, 1965.

Material examined. Four females, Russia, Tomsk Region, vicinity of Zavarsino settlement, 56°27′55.7″ N, 085°06′55.6″ E, 22 December 2014, on *Polygraphus proximus* Blandford, 1894 and in its galleries under bark of Siberian fir (*Abies sibirica*), leg. I.A. Kerchev; 7 females, Russia, Tomsk Region, Tomsk District, vicinity of Tomsk, 56°29′ N, 84°57′ E, 31 May–2 June 2016, on *Polygraphus proximus* and in its galleries under bark of Siberian fir, leg. A.A. Khaustov; 2 females, same data, ex Tetropium sp. (Coleoptera: Cerambycidae) under bark of Siberian pine (*Pinus sibirica*), leg. I.A. Kerchev; 1 female, Russia, Tyumen Region, Tyumen District, vicinity of Tomsk, 56°29′ N, 84°57′ E, 31 May–2 June 2016, on *Polygraphus typographus* under bark of Siberian spruce (*Picea obovata*), leg. A.A. Khaustov; 1 female, Russia, Khanty-Mansi Autonomous Okrug, Oktyabrsky District, vicinity of Usan, 57°04′ N, 65°04′ E, 14 June 2016, in galleries of *Ips typographus* under bark of Siberian fir (*Picea obovata*), leg. A.A. Khaustov; 2 females, same data, ex *Tetropium* sp. (Coleoptera: Cerambycidae) under bark of Siberian pine (*Pinus sibirica*), leg. I.A. Kerchev; 1 female, Russia, Tyumen Region, Tyumen District, vicinity of Tyumen, 57°04′ N, 65°04′ E, 26 August 2016, in galleries of *Ips acuminatus* under bark of Korean pine (*Pinus koraiensis*), leg. A.A. Khaustov; 10 females, Russia, Primorsky Kray, vicinity of Lazo settlement, 43°30′ N, 133°34′ E, 26–28 August 2016, in galleries of *Polygraphus proximus* under bark of Khingan fir (*Abies nephrolepis*), leg. A.A. Khaustov; 2 females, Russia, Tyumen Region, Nizhnetavdinsky District, vicinity of Tyunevo settlement, 57°23′ N, 65°41′ E, 7 October 2016, in galleries of *Polygraphus subopacus* Thomson, 1871 under bark of Siberian spruce, leg. A.A. Khaustov; 4 females, Russia, Sakhalin Region, Sakhalin Island, Yuzhno-Sakhalinsk, 3 August 2017, in galleries of *Polygraphus proximus* under bark of Sakhalin fir (*Abies sachalinensis*), 46°54′40.3″ N; 142°46′03.9″ E, leg. A.A. Khaustov; 4 females, 1 male, Russia, Sakhalin Region, Kunashir Island, in galleries of *Polygraphus proximus* under bark of Sakhalin fir, 44°00′30.0″ N; 145°41′39.7″ E, 5 August 2017, leg. A.A. Khaustov; 6 females, 1 male, Russia, Sakhalin Region, Kunashir Island, in galleries of *Ips typographus japonicus* Niisima, 1909 under bark of Sakhalin spruce (*Picea glehnii*), 44°00′56.2″ N; 145°45′31.3″ E, 8 August 2017, leg. A.A. Khaustov; 4 females, Russia, Sakhalin Region, Sakhalin Island, in galleries of *Ips typographus* under bark of Sakhalin spruce, 46°47′04.9″ N; 142°23′13.0″ E, 13 August 2017, leg. A.A. Khaustov.

Fig. 3c

Proctolaelaps hystricoides Lindquist and Hunter, 1965

Type series of *P. hystricoides* included specimens from Canada and the USA. The mites were found in galleries of many Scolytinae beetle species, under the bark of pines. Later, this species was recorded in soil samples from Iran (references in Kazemi and Rajaei 2013). Hadad Iraninezhad et al. (2001) reported this species in Iranian cotton fields. These mites also occur on bark beetles *Pityokteines* spp. that live on Silver fir (*Abies alba*) in Croatia (Pernek et al. 2008). This is a new record for the fauna of Russia.

Material examined. Two females, Russia, Tomsk Region, Tomsk District, vicinity of Tomsk, 56°29′ N, 84°57′ E, 31 May 2016, on *Polygraphus proximus* under bark of Siberian fir, leg. A.A. Khaustov; 2 females, same locality, 28 April 2017, in galleries of *Polygraphus proximus* under bark of Siberian fir, leg. A.A. Khaustov; 9 females, Russia, Tomsk Region, Tomsk District, vicinity of Usan, 57°04′ N, 65°04′ E, 29 April–5 May 2016, on *Pityogenes chalcographus* under bark of Siberian spruce (*Picea obovata*), leg. A.A. Khaustov; 1 female, same locality, 5 June 2017, in alcohol sediments of tree traps together with *Ips typographus*; 6 females, Russia, Khanty-Mansi Autonomous Okrug, Oktyabrsky District, vicinity of Oktiabrskoye settlement, 43°30′ N, 133°34′ E, 26–28 August 2016, in galleries of *Polygraphus proximus* under bark of Khingan fir (*Abies nephrolepis*), leg. A.A. Khaustov; 2 females, Russia, Tomsk Region, Nizhnetavdinsky District, vicinity of Tyunevo settlement, 57°23′ N, 65°41′ E, 7 October 2016, in galleries of *Polygraphus subopacus* Thomson, 1871 under bark of Siberian spruce, leg. A.A. Khaustov; 4 females, Russia, Sakhalin Region, Sakhalin Island, Yuzhno-Sakhalinsk, 3 August 2017, in galleries of *Polygraphus proximus* under bark of Sakhalin fir (*Abies sachalinensis*), 46°54′40.3″ N; 142°46′03.9″ E, leg. A.A. Khaustov; 4 females, 1 male, Russia, Sakhalin Region, Kunashir Island, in galleries of *Polygraphus proximus* under bark of Sakhalin fir, 44°00′30.0″ N; 145°41′39.7″ E, 5 August 2017, leg. A.A. Khaustov; 6 females, 1 male, Russia, Sakhalin Region, Kunashir Island, in galleries of *Ips typographus japonicus* Niisima, 1909 under bark of Sakhalin spruce (*Picea glehnii*), 44°00′56.2″ N; 145°45′31.3″ E, 8 August 2017, leg. A.A. Khaustov; 4 females, Russia, Sakhalin Region, Sakhalin Island, in galleries of *Ips typographus* under bark of Sakhalin spruce, 46°47′04.9″ N; 142°23′13.0″ E, 13 August 2017, leg. A.A. Khaustov.
leg. A.A. Khaustov; 2 females, 1 male, Altai Republic, 51°18′53.9″ N, 085°40′25.0″ E, in galleries of Ips subelongatus Motchulsky, 1860 under bark of Siberian larch (Larix sibirica), leg. A.A. Khaustov; 4 females, 1 male, Russia, Sakhalin Region, Sakhalin Island, 46°51′59.2″ N, 142°52′42.7″ E, in galleries of Ips subelongatus under bark of Kuril larch (Larix kurilensis), leg. A.A. Khaustov.

PROCTOLAELAPS HYSTRIX (VITZTHUM, 1923)

Fig. 3d

Lasioseius (Lasioseius) hystrix Vitzthum, 1923, p. 105, Figs. 8, 9.

Proctolaelaps (Proctolaelaps) hystrix.—Evans, 1958, p. 200.

P. hystrix was described from Austria from the galleries of Dendroctonus micans (Kugelann, 1794) and Hylastes ater Paykull, 1800 (Coleoptera: Curculionidae: Scolytinae) (Vitzthum 1923). Currently, this species is known from Europe, North America and Australia (Lindquist and Hunter 1965; Halliday et al. 1998; Fend'a and Mašán 2003; Salmane 2005; Gwiazdowicz 2008; Chaires-Grijalva et al. 2016). This is a new record for the fauna of Russia.

Material examined. Twelve females, 1 male, Russia, Tyumen Region, vicinity of Omutinsky settlement, 56°35′11″ N, 67°42′55″ E, 18 August 2016, in galleries of Dendroctonus micans under bark of Scots pine (Pinus sylvestris), leg. A.A. Khaustov.

PROCTOLAELAPS JUERADEUS (SCHWEIZER, 1949)

Fig. 3e

Lasioseius jüradeus Schweizer, 1949, p. 52, Fig. 30.

This species is widely distributed in the Holarctic (including Russia). It is associated with soil and related substrates (Schweizer 1949; Evans 1958; Chant 1963; Westerboer 1963; Bregetova 1977; Karg 1993; Salmane 2001; Marchenko 2002, 2012; Gwiazdowicz 2008; Makarova 2012). Previously, P. jueradeus had never been reported as an associate of bark beetles.

Material examined. One female, Russia, Tyumen Region, Tyumen District, vicinity of Uspenka settlement, 57°04′ N, 65°04′ E, 22 May 2017, in alcohol sediments of tree traps together with Ips typographus, leg. A.A. Khaustov.

PROCTOLAELAPS SCOLYTI EVANS, 1958

Fig. 3f

Proctolaelaps (Proctolaelaps) scolyti Evans, 1958, p. 201, Figs. 36–38.

Proctolaelaps ulmi Hirschmann, 1962, p. 30, Fig. 13 (2).

This species is distributed in Europe, as well as Western and Central Asia. P. scolyti is mainly associated with bark beetles. The species has been recorded on sap beetles Carophillus hemipterus (Linnaeus, 1758), as well as in soil, hollow trees, under bark, and in bird nests (Evans 1958; Westerboer 1963; Rybin 1983; Salmane 2005; Fend’a 2010; Çakmak et al. 2011). This is a new record for the fauna of Russia.

Material examined. Three females, Russia, Khanty-Mansi Autonomous Okrug, Oktyabrsky District, vicinity of Oktyabrskoye settlement, 62°27′ N, 66°04′ E, 11 August 2016, in galleries of Scolytus ratzeburgi Janson, 1856 under bark of Silver birch (Betula pendula), leg. A.A. Khaustov.

Key to females of Proctolaelaps associated with subcortical beetles

1. Anus small, length of anal shield exceeding length of anal opening by 3.5 or more times 2
 — Anus large, length of anal shield exceeding length of anal opening by 2–3 times..................6
2. Setae j1–j5 not less than 2.5 times shorter than setae J1–J4 [Western Palaearctic: Europe]...6
 — Setae j1–j5 similar in length to setae J1–J4..3
 — Pre-sternal area with 1 or 2 pairs of platelets. Dorsal shield oval ..4
4. Pre-sternal area with 2 pairs of platelets (Fig. 3e). Epistomal margin denticulate. Fixed cheliceral digit with pilus dentilis [Holarctic]..........................P. jueradeus (Schweizer, 1949)
— Pre-sternal area with one pair of platelets. Epistomal margin smooth. Pilus dentilis absent5

5. Length of anal shield exceeding length of anal opening by 3.5 times; anus located in central part of shield [Western Palaearctic: Europe].................
— Length of anal shield exceeding length of anal opening by 5 times; anus located in posterior part of shield [Western Palaearctic: Slovakia].............
— P. slovacus Mašán, 1998

6. Epistome tri-ramous or bi-ramous7

— Setae j3–j5 and J2–J4 subequal in length. Setae Z5 simple. Post-anal seta equal to or longer than seta JV5 ...8

8. Setae of j-J-series longer, seta j4 as long as distance to seta j5, seta J3 as long as distance to seta J4 [Palaearctic; Nearctic; Australasial].................................P. hystrix (Vitzthum, 1923)
— Setae of j-J-series shorter, seta j4 shorter than distance to seta j5, seta J3 shorter than distance to seta J49

9. Sternal shield smooth in central part (Fig. 3b). Setae st1 not close together, distance st1–st1 longer than distance st1–st2 [Holarctic].................
— Sternal shield medially with longitudinal row of elongated cells (Fig. 3c). Setae st1 close together, distance st1–st1 shorter or equal to distance st1–st2 [Holarctic].................P. fiseri Mašán, 1960
— P. fiseri Mašán, 1960

10. Dorsal setae shorter, length of setae J1–J3 shorter than half distance to subsequent seta.....11
— Dorsal setae longer, length of setae J1–J3 subequal to equal distance to subsequent seta.....13

11. Pre-sternal area with a pair of platelets. Subcapitular setae pc thickened basally [Nearctic; Northern Neotropics: Honduras]........P. subcorticalis Lindquist and Hunter, 1971
— Pre-sternal area without platelets (Fig. 3a). Subcapitular setae pc simple..................12

12. Fixed cheliceral digit with 13 teeth, movable digit with 4 teeth. 7th row of hypostomal groove well developed, with 6 denticles. Epistomal margin with irregular dentate projections [Western Palaearctic: Europe]............P. brevipilis (Westerboer, 1963)
— Fixed cheliceral digit with 5–7 teeth, movable digit with 2 teeth. 7th row of hypostomal groove absent. Epistomal margin with small uniform denticles [Holarctic].................................P. dendrocoeni Lindquist and Hunter, 1965
13. Seta j6 reaching base of seta J114
— Seta j6 not reaching base of seta J118

14. Fixed cheliceral digit with 4 teeth and pilus dentilis; movable digit with 1 tooth [Palaearctic].
— P. stamperi (Westerboer, 1963)
— Fixed cheliceral digit with 7 or more teeth, pilus dentilis absent; movable digit with 2–3 teeth........15

15. Fixed cheliceral digit with 7 teeth. Anal shield long, almost reaching epigynal shield anteriorly; anal opening located mainly in posterior region of shield [Palaearctic].................................P. longanalis (Westerboer, 1963)
— Fixed cheliceral digit with about 20 teeth. Anal shield of normal length; anal opening located mainly in anterior region of shield...............16

16. 1–4th rows of hypostomal groove each with 7–10 denticles. Epistomal margin with about 40 denticles [Western Palaearctic: Europe]......................P. pini Hirschmann, 1962
— 1–4th rows of hypostomal groove each with 1–4 denticles. Epistomal margin with about 10 denticles..17

— Anterior margin of epistome rounded, with sparsely spaced small denticles. Internal malae shorter than corniculi [Western Palaearctic: Europe, Asian Turkey]........P. rotundus Hirschmann, 1962

18. Fixed cheliceral digit with about 25 teeth and dorsodistal pointed process; movable digit with 3–5 teeth. 1–4th rows of hypostomal groove each with about 10 denticles [Eastern Palaearctic: Japan]....................P. nipponicus Ishikawa, 1968
— Fixed cheliceral digit with about 15 teeth, dorsodistal process absent; movable digit with 2–3 teeth. 1–4th rows of hypostomal groove each with 0–3 denticles.........................19

19. Setae j1, J4, Z3–Z5 subequal in length. 5th row of hypostomal groove medially smooth; 7th row absent. Internal malae shorter than corniculi [Neotropics: Chile]........P. ruehmi Hirschmann, 1972
— Seta Z5 1.5–2 times as long as setae j1, J4, Z3, Z4. 5th row of hypostomal groove medially with 1 or several denticles; 7th row present. Internal malae longer than corniculi..................................20

20. Sternal shield medially smooth. Epigynal shield with pointed triangular anterior flap extending to level of setae st2. Epistomal margin triangu-
lar, denticulate. Postgenital platelets present [Cos-
— Sternal shield medially reticulate (Fig. 3f).
Epigynal shield with rounded anterior flap extend-
ing to level of setae st3. Epistomal margin rounded,
denticulate. Postgenital platelets absent [Palaearc-
tic] ..P. scolyti Evans, 1958

Notes:
*Gwiazdowicz (2007) suspected P. kielczewskii and
P. moseri to be junior synonyms of P. xyloteri.
**Gwiazdowicz (2007) suspected P. pruni to be a
junior synonym of P. eccoptogasteris.

ACKNOWLEDGEMENTS

Deep appreciation is due to Dr. Evert E. Lind-
quist (Canadian National Collection of Insects,
Arachnids, and Nematodes, Science and Technol-
ga branch, Agriculture and Agri-Food Canada,
Ottawa, Canada) for the information about the
morphology of Proctolaelaps dendroctoni; to Dr.
Bruce R. Halliday (Australian National Insect Col-
lection, CSIRO, Canberra, Australia) for sending
important copies of papers for the present work; to
Dr. Olga L. Makarova (A.N. Severtsov Institute of
Ecology and Evolution, Moscow, Russia) for her
numerous suggestions on how to improve this
paper; to Dr. Mikhail Ju. Mandelshtam (Center for
Bioinformatics and Genome Research, Saint-Pe-
tersburg S.M. Kirrov State Forest Technical Uni-
versity, Saint-Petersburg, Russia) for his help in
collecting material and identifying the bark beetles;
to Roman V. Latynsetv (Tyumen State University,
Russia) for logistics; and to Andrei N. Bobylev
(Tyumen State University) for preparing the SEM
photos. This research was supported by the grant
from the Russian Science Foundation, project No.
16-14-10109 to Dr. Alexander A. Khaustov.

REFERENCES

Abo-Shnaf, R.I.A. and Moraes, G.I. de. 2016. Procto-
laelaps species (Acarina: Mesostigmata: Melichari-
da) from Egypt, with description of a new species and
org/10.11646/zootaxa.4162.3.4

of the genus Proctolaelaps (Acosejidae) from
galleries of bark beetles in the Moscow Province.
Biologicheski Nauki, 10: 34–37. [In Russian]

species and a new record of the genus Proctolaelaps
from China (Acarina: Blattisocidae). Acta Zootaxo-
nomica Sinica, 18, 174–176. [In Chinese]

Bregetova, N.G. 1977. Fam. Acosejidae Baker and
Wharton, 1952 (sensu Evans, 1958). In: M.S. Ghi-
lyarovich and N.G. Bregetova (Eds.). Key to the Soil-
Inhabiting Mites. Mesostigmata. Leningrad,
Nauka, pp. 169–226. [In Russian]

Çakmak, I., Faraji, F., and Cobanoğlu, S. 2011. A
checklist and key to the Ascoidea and Phytoseioi-
dea (except Phytoseiidae) species of Turkey with
three new species records (Acaria: Mesostigmatidae).

Chaires-Grijalva, M.P., Estrada-Venegas, E.G., Equi-
hua-Martínez, A., Moser, J.C., Sánchez-Martí-
tez, G., Vázquez-Rojas, I.M., Otero-Colina, G.,
and Romero-Nápoles, J. 2013. Mesostigmados
(Acaria: Mesostigmatidae) asociados con Dendrocto-
nus rhizophagus de Chihuahua, México. Revista
Mexicana de Biodiversidad, 84: 1235–1242. [In

Chant, D.A. 1963. The subfamily Blattisocinae Garman
(Acosejinae Evans) (Acarina: Blattisocidae Gar-
man) (Acosejidae Baker and Wharton) in North
America, with descriptions of a new species. Ca-
dx.doi.org/10.1139/z63-025

Costa, M. 1963. The mesostigmatic mites associated
with Copris hispanus (L.) (Coleoptera, Scarabaed-
dae) in Israel. Journal of the Linnean Society of
org/10.1111/j.1096-3642.1963.tb00485.x

Davydova, M.S. 1988. New species of gamasid mites
associated with bumble bees. Novye i Maloizvest-
nye Vidy Fauny Sibiri, 20: 18–32. [In Russian]

Davydova, M.S. and Nikolsky, V.V. 1986. Gamazovye
kleshchi Zapadnoy Sibiri [Gamasid mites of West
Siberia]. Nauka, Novosibirsk, 123 pp. [In Russian]

De Leon, D. 1963. New genus and twelve new species
of mites from Mexico and southeast United States
(Acarina: Blattisociidae). The Florida Entomologist,

Evans, G.O. 1958. A revision of the British Acosejineae
(Acarina: Mesostigmata). Proceedings of the Zoolo-
dx.doi.org/10.1111/j.1096-3642.1958.tb00685.x

Evans, G.O. 1963a. Observations on the chaetotaxy
of the legs in the free-living Gamasina (Acarina: Meso-
stigmata). Bulletin of the British Museum (Natural
.org/10.5962/bhl.part.20528

Evans, G.O. 1963b. Some observations on the chaetotaxy
of the pedipalps in the Mesostigmata (Acarina). Annals
and Magazine of Natural History, Series 13, 6: 513–
527. http://dx.doi.org/10.1080/00222936308651393

Evans, G.O. 1969. Observations on the ontogenetic develop-
ment of the chaetotaxy of the tarsi of legs II–IV in
Mites of the genus *Proctolaelaps*

Karg, W. 1993. *Acaria* (Acarina), Milben Parasitiformes (*Anactinochaeta*), Cohors Gamasina Leach, Raubmilben. Die Tierwelt Deutschlands und der angren...

Moraes, G.J. de, Venancio, R., Santos, V.L.V. dos, and Paschoal, A.D. 2015. Potential of Ascidae, Blat-
Mites of the genus *Proctolaelaps*

Note: This text is a partial list of references related to mites and their ecological studies. For a complete list, please refer to the original document.