Acarina 33 (1): 17–36 © Acarina 2025

FEATHER MITES (ACARIFORMES: PSOROPTIDIA) ASSOCIATED WITH THE COMMON CRANE *GRUS GRUS* (GRUIFOMES: GRUIDAE)

Sergey V. Mironov

Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia sergei.mironov@zin.ru

ABSTRACT: Four feather mite species have been collected from the Common Crane *Grus grus* (Gruidae). Of them, *Pseudogabucinia malovichkoae* sp. n. (Kramerellidae) is described as a new species, and *Geranolichus gruis* (Trouessart, 1884) (Pterolichidae) is redescribed. Two other recovered species are *Megniniella gruophila* Mironov and Malovichko, 2023 (Analgidae) and *Brephosceles* sp. (Alloptidae). The fauna of feather mites recovered from the Common Crane is taxonomically most similar to that recovered from the Sandhill Crane, *Antigone canadensis*, and includes close species of the same three genera: *Brephosceles* Hull, 1934, *Geranolichus* Gaud, 1968 and *Pseudogabucinia* Černý, 1961. The taxonomy and the species composition of the feather mite genera recovered from the Common Crane are briefly discussed.

KEY WORDS: feather mites, Brephosceles, Geranolichus, Megniniella, Pseudogabucinia, systematics, host associations

DOI: 10.21684/0132-8077-2025-33-1-17-36

INTRODUCTION

Feather mites (Psoroptidia: Analgoidea and Pterolichoidea) are ectosymbionts (commensals and parasites), permanently living on birds (Gaud and Atyeo 1996; Dabert and Mironov 1999; Proctor and Owens 2000; Proctor 2003; OConnor 2009; Mironov 2016). These mites are highly specialized, predominately occupying various microhabitats in the flight and body feathers of their avian hosts (although representatives of some taxa inhabit the skin and the nasal cavities of birds). Because birds provide numerous and varied microhabitats for these mites, each bird species usually carries a complex of several specific mite species.

The world fauna of feather mites currently includes about 2,600 species, distributed across 500 genera and 36–38 families; however, the number of extant species is estimated to be up to ten times greater (Peterson 1975; Gaud and Atyeo 1996; Mironov 2016). To date, representatives of these mites have been collected from birds of all recognized avian orders, although the primary origin of the feather mites collected from the representatives of the orders Sphenisciformes and Rheiformes remains disputable. Feather mites are also highly host-specific, both at the species level and at higher taxonomic levels, and often display co-evolutionary trends with their hosts (Gaud and Atyeo 1982, 1996; Dabert 2005).

The extant orders of birds have been explored unevenly in regards to feather mite diversity (Gaud and Atyeo 1996; Proctor 2003). For instance, while the order Gruiformes currently includes about 145 species arranged in six families (Gill *et al.* 2025), only the feather mite fauna of rails (Rallidae)—and mainly of those distributed across Europe and Af-

rica—has been examined to any meaningful extent (Dubinin 1956; Gaud and Mouchet 1959a, b, 1963; Gaud 1960, 1968; Peterson and Atyeo 1968; Atyeo and Peterson 1976; Gaud and Atyeo 1981; Mironov 1981; Mironov and Galloway 2002; Mironov *et al.* 2024; Waki *et al.* 2024). The data on feather mites associated with the remaining families of gruiforms (Aramidae, Gruidae, Heliornithidae, Psophidae and Sarothruridae) are quite fragmentary (Gaud and Mouchet 1963; Gaud 1968; Peterson and Atyeo 1968; Atyeo and Gaud 1977, 1980, 1984; Gaud and Atyeo, 1996).

Among the family of cranes (Gruidae), which currently includes 15 extant species, feather mites are known only from four species: the Common Crane Grus grus (Linnaeus), Sandhill Crane Antigone canadensis (Linnaeus), Black Crowned Crane Balearica pavonina (Linnaeus) and Grey Crowned Crane B. regulorum (Bennett). Feather mites of the four families have been recovered from these hosts: Alloptidae and Analgidae, belonging to the superfamily Analgoidea; and Kramerellidae and Pterolichidae from the superfamily Pterolichoidea (Canestrini and Berlese 1882; Trouessart 1884; Berlese 1897; Canestrini and Kramer 1899; Gaud 1958, 1968; Gaud and Mouchet 1959a, 1959b; Atyeo and Windingstad 1979; Mironov and Malovichko 2023).

The Common Crane, also known as the Eurasian Crane, is a medium-sized crane species, widely distributed in the Palearctic, with its breeding range spreading from Western Europe to the Chukotka Peninsula in the east and northern China, Turkey and the Caucasus in the south (Gill *et al.* 2025; Lepage 2025). For a very long time, only one

feather mite species, *Geranolichus gruis* (Trouessart, 1884) (Pterolichidae), has been known from this host. A few years ago, the second feather mite specific to this bird, *Megniniella gruophila* Mironov and Malovichko, 2023 (Analgidae), was described from the Common Crane. The present study reports four feather mite species collected from the Common Crane in European Russia, and includes the description of a new species of the genus *Pseudogabucinia* Černý, 1961 (Kramerellidae) and a redescription of *G. gruis*, based on newly collected material.

MATERIALS AND METHODS

The primary material of this study includes four carcasses of Common Cranes, found deceased in the Stavropolsky Krai, European Russia, in November 2022. The wings and part of the body plumage were removed from the bird carcasses and stored in plastic bags in a freezer. In laboratory conditions, the remiges and covert feathers were examined for the presence of feather mites with a Leica stereomicroscope M60 (Leica Microsystems, Inc.). Dead mites, detected on feathers, were collected manually with a preparation needle and preserved in vials with 96% ethanol. Additionally, all feathers were subjected to a washing technique (Mironov and Galloway 2002; Galloway and Lamb 2014). After washing, the water was passed through a cotton filter and the retained mites were gathered and preserved in ethanol. For identification and description, mites were mounted on microscope slides in the Hoyer's medium (Krantz and Walter 2009) and dried at 60°C for 5–7 days. The examination of mite specimens, as well as the line drawings and measurements were made with a Leica microscope DM2500, equipped with differential interference contrast optics (DIC), a camera lucida, and an ocular micrometer.

The descriptions of mite species are provided according to the formats and measuring techniques used for corresponding taxa of the families Kramerellidae and Pterolichidae (Dabert *et al.* 2008; Dabert and Labrzicka 2009; Mironov *et al.* 2015; Hernandes and Mironov 2015; Hernandes 2020; Waki *et al.* 2023; Mironov 2024). General morphological terms and idiosomal chaetotaxies follow Gaud and Atyeo (1996), with minor corrections by Norton (1998). All measurements are in micrometers (µm). Scientific names of birds and their supraspecific classification follow Gill *et al.* (2025). All mite specimens have been deposited in ZISP—

the Zoological Institute of the Russian Academy of Sciences (Saint Petersburg, Russia).

SYSTEMATICS

Superfamily Pterolichoidea Trouessart and Mégnin, 1984

Family Kramerellidae Gaud and Mouchet, 1957

Genus Pseudogabucinia Černý, 1961

Type species: *Pterolichus ciconiae* Canestrini and Berlese, 1882, by original designation.

The genus Pseudohabucinia includes only five species, distributed among hosts from four bird orders. These hosts, represented by Ciconiiformes (Ciconiidae), Falconiformes (Falconidae), Gruiformes (Gruidae), and Otidiformes (Otididae) (Canestrini and Berlese 1882; Dubinin 1956; Černý 1961; Gaud and Mouchet 1961; Gaud 1968, 1982, 1983; Atyeo and Windingstad 1979; Chirov and Mironov 2017), are phylogenetically quite distant from each other. Of the genus Pseudohabucinia, two species were described from cranes: Pseudogabucinia moucheti Gaud, 1968 from the Black Crowned Crane, Balearica pavonina (Linnaeus), in Cameroon; and P. reticulata Atyeo and Windingstad, 1979 from the Sandhill Crane, Antigone canadensis tabida (Peters), in the USA (Gaud, 1968; Atyeo and Windingstad, 1979). The new species described below is the third species of this genus known from cranes.

Such erratic distribution of the *Pseudogabucinia* species raises some doubts about the monophyly of the genus. Extensive studies of feather mite diversity and their host associations will probably help solve this taxonomic issue.

Pseudogabucinia malovichkoae sp.n.

(Figs. 1–6)

Type material. Male holotype (ZISP 23768), 19 male and 19 female paratypes (ZISP 23769–23806) from *Grus grus* (Linnaeus, 1758) (Gruiformes: Gruidae), Russia, Stavropolsky Krai, Turkmen District, near Poperechnyi, 45°25′22″N 43°15′28″E, 10 November 2022, coll. L. V. Malovichko.

Description. *Male* (holotype, range for 10 paratypes) (Figs. 1, 2, 5A, 6A–E). Idiosoma strongly widened, length 290 (285–305), greatest

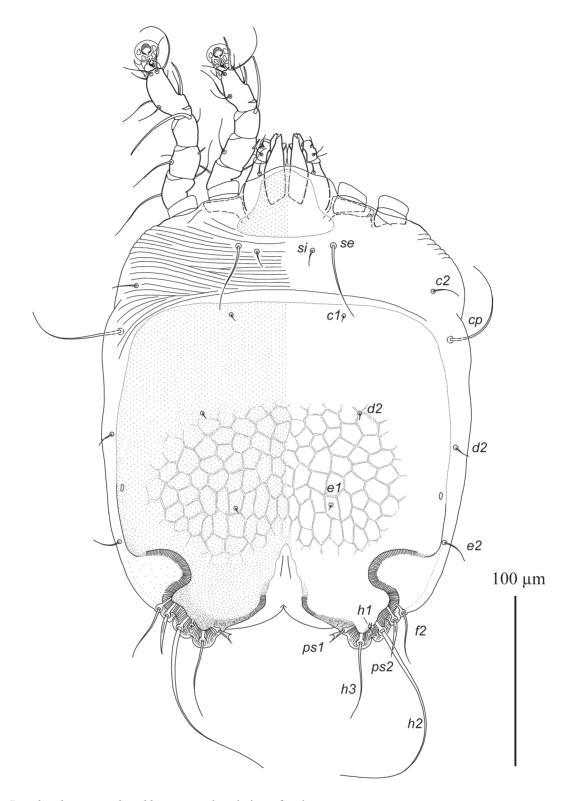


Fig. 1. Pseudogabucinia malovichkoae sp.n., dorsal view of male.

width at level of humeral setae 220 (205–220), length of hysterosoma 215 (215–225). Subcapitulum trapezoidal, length excluding palps 30 (30–38), wide at base 68 (55–60). Prodorsal shield roughly trapezoidal in shape, posterior corners rounded,

length 43 (38–45), width at posterior margin 68 (65–70), surface without ornamentation. Distances between scapular setae: *se:se* 58 (55–65), *si:si* 35 (35–43). Lateral setae *c2* and *c3* filiform, 20 (15–20) and 28 (23–30) long, respectively. Scapular and

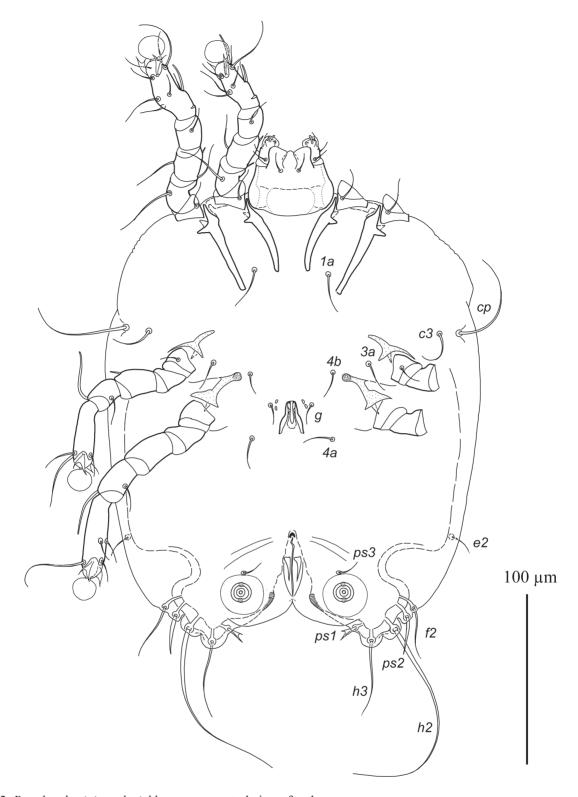


Fig. 2. Pseudogabucinia malovichkoae sp.n., ventral view of male.

humeral shields absent. Hysteronotal shield: covering almost entire dorsal surface of hysterosoma, anterior margin straight or slightly convex, anterior corners widely rounded, lateral margins almost straight, posterolateral margins with large and deep

semicircular incisions, surface of posterior half with reticulate ornamentation, greatest length 205 (205–220), greatest width at level of setae *d2* 200 (190–205). Lateral sclerotized bands indistinct. Supranal concavity opened posteriorly, with uneven

margins, anterior end extending to level of setae e2. Opisthosomal lobes short, bluntly triangular; posterolateral margin and apex of each lobe with two semi-rounded projections bearing macrosetae h2 and h3, respectively. Terminal cleft short, bluntly angular, with membranous margin, anterior end extending to level of setae f2, length 25 (25–32), width (distance between apical projections bearing setae h3) 80 (80-88). Setae ps1 bifurcate with membrane between branches, 10 (10-12) long, situated on margins of terminal cleft near apical projections of lobes. Setae f2 filiform; setae ps2 narrowly lanceolate, 23 (20-23) long. Setae h1 minute filiform, situated anteromesal to bases of setae h2. Distances between setae and gland openings: c2:d2 90 (80–90), d2:e2 60 (60–78), d2:gl 30 (30–42), *e2:h3* 65 (64–70), *d1:d2* 18 (10–18), *e1:e2* 20 (18-22), h2:h2 120 (120-140), h3:h3 98 (95-105), ps1:ps1 75 (72–75), ps2:ps2 140 (135–150).

Epimerites I slightly curved, posterior ends not divergent. Epimerites II almost straight. Genital apparatus situated at level of trochanters IV. Genital arch small, 20 (20-22) × 16 (16-18); aedeagus straight, slightly thickened distally, 15 (15-16) long. Genital papillae at level of genital arch apex. Setae 4b posterior level of setae 3a. Setae g at level of genital arch apex. Setae 4a posterior to genital arch apex and widely separated from each other, approximately as widely as setae la. Adanal suckers 13 (13–15) in diameter; corolla with a pair of thickenings, on anterior and posterior margins, respectively. Distances between setae: *3a:4b* 6 (5–8), *4b:g* 20 (18–22), *g:4a* 18 (18–23), 4a:ps3 82 (75-83), ps3:h3 40 (38-45), ps3:ps3 58 (56-60).

Ventral margins of tarsi I, II noticeably convex. Trochanters of legs III and IV far distant from lateral margins of hysterosoma. Legs IV with ambulacral disc extending only to bases of setae f2. In tarsus IV, setae d and e button-like, situated in distal part of this segment; tibial solenidion φ IV approximately half as long as tarsus IV. Lengths of tarsi: I 31 (31–33), II 35 (35–38), III 35 (35–39), IV 43 (43–48). Lengths of solenidia: φ III 10 (9–12), φ III 20 (19–21), φ II 5 (4–6), φ II 4 (3.5–4), φ III 7 (6–8), φ IV 30 (25–30).

Female (range for 10 partypes) (Figs. 3, 4, 5B, 6F–H). Idiosoma strongly widened, length 315–365 × 220–250, length of hysterosoma 235–280. Subcapitulum trapezoidal, 40–44 long, 65–70 wide at base. Prodorsal shield shaped as in the male, length 48–55, wide at posterior margin 75–80, surface

without ornamentation. Distances between scapular setae: *se:se* 68–78, *si:si* 44–54. Lateral setae *c2* and c3 filiform, 20-23 and 24-30 long, respectively. Scapular and humeral shields absent. Hysteronotal shield: covering most dorsal area of hysterosoma except posterior quarter, anterior margin straight, anterior corners widely rounded, lateral margins almost straight, posterolateral margins with a pair of angular incisions separated by median extension, surface of posterior half with reticulate ornamentation, length 200-230, greatest width at level of setae e2 200-220. Lateral sclerotized bands poorly distinct on ventrolateral areas of opisthosoma. Posterior end of opisthosoma widely rounded. Setae c1, d1, e1 and hysteronotal gland openings gl on hysteronotal shield. Setae d2 and e2 on soft tegument near lateral margins of hysteronotal shield. Setae h1 on soft tegument, approximately at level of setae f2. Distances between setae and gland openings: c2:d2 98-110, d2:e2 60-78, d2:gl 35-45, e2:h3 75-80, d1:d2 7–15, e1:e2 15–25, h1:h3 23–30, h2:h2 87–100, h3:h3 63-70.

Epimerites I bow-shaped, posterior ends divergent. Epimerites II straight. Epigynum thick bow-shaped, almost touching tips of epimerites I, $12-15 \times 35-40$. Genital papillae at level of setae 3a. Setae g at level of setae 3a or slightly posterior. Copulatory opening immediately posterior to anal opening. Spermatheca and spermaducts as in Fig. 6H; secondary spermaducts 5 long. Distances between ventral setae: 4b:3a 12-14, g:4a 38-42.

Legs I, II as in the males. Legs IV with ambulacral disc not extending to level of setae f2. Lengths of tarsi: I 36–38, II 43–45, III 42–44, IV 48–52. Lengths of solenidia: ω 1I 10–12, ω 1II 20–25, σ I and σ II 6–7, σ III 7–8, φ III 32–35, φ IV 20–24.

Differential diagnosis. Of two *Pseudogabu-cinia* species, previously known from cranes, the new species, *Pseudogabucinia malovichkoae* sp.n., is the closest to *P. reticulata* Atyeo and Windingstad, 1979. The above species share the following characters: in both sexes, the idiosoma is strongly widened, with the length/width ratio about 1.5; legs III and IV are far distant from the lateral margins of idiosoma; in male, the genital apparatus is situated at the level of trochanters IV, and genital setae *g* are widely separated from each other; in females, the hysteronotal shield is approximately as wide as it is long. The new species differs from *P. reticu-*

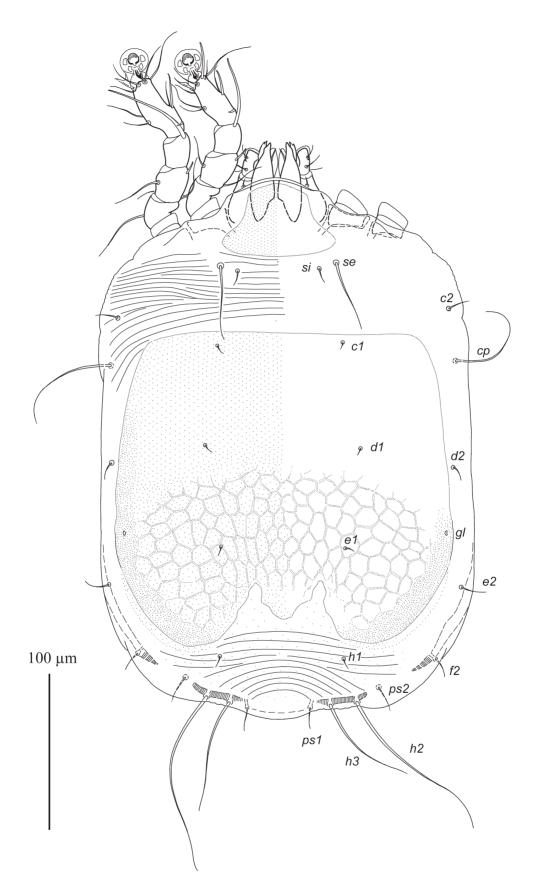


Fig. 3. Pseudogabucinia malovichkoae sp.n., dorsal view of female.

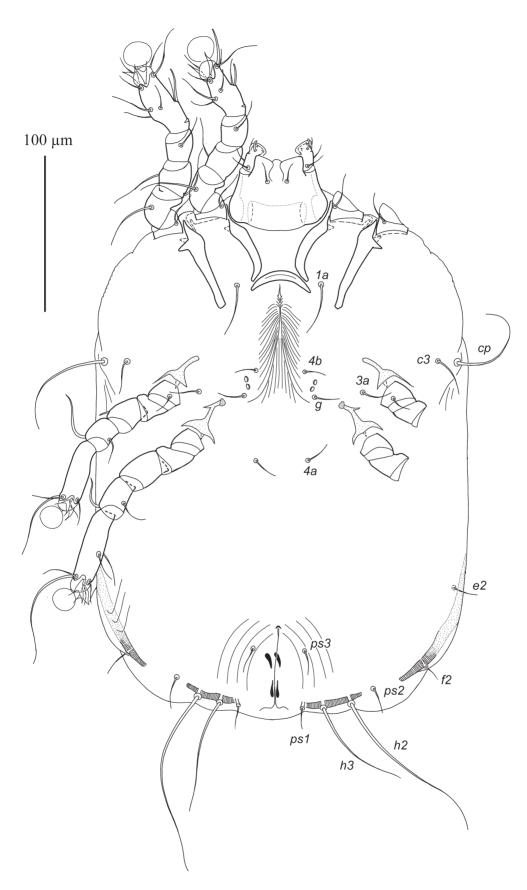


Fig. 4. Pseudogabucinia malovichkoae sp.n., ventral view of female.

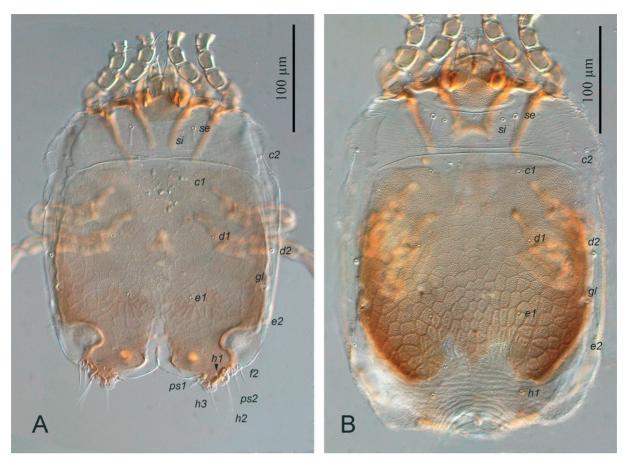


Fig. 5. Pseudogabucinia malovichkoae sp.n., dorsal view of idiosoma, A-male, B-female.

lata in the following features: in both sexes of P. malovichkoae, only the posterior half of the hysteronotal shield has a distinct reticulate ornamentation; in males, the posterolateral margins of the hysterononotal shield have a large semi-ovate incision with a strongly sclerotized border, and the terminal cleft is shorter (25–30 long), extending to the level of setae f2; in females, setae f2 anterior to the level of setae ps2. In both sexes of P. reticulata, the entire surfaces of the prodorsal and hysteronotal shields are covered with a reticulate pattern; in males, the posterolateral margins of the hysteronotal shield reach the posterolateral margins of the opisthosomal lobes and do not have any incision, the terminal cleft is large (about 40 long), triangular, and extends to the level of adanal suckers; in females, setae f2 and ps2 are approximately at the same transverse level.

Etymology. The species is named in honor of Prof. Lyubov V. Malovichko, a famous Russian ornithologist (Russian State Agrarian University, Moscow Timiryazev Agricultural Academy, Russia), who suddenly passed away in October 2024.

Family Pterolichidae Trouessart and Mégnin, 1984

Subfamily Pterolichinae Trouessart and Mégnin, 1984

Genus Geranolichus Gaud, 1968

Type species: *Pterolichus* (*Pseudalloptes*) *gruis* Trouessart, 1884, by original designation.

The genus *Geranolichus* is restricted in its host distribution to cranes (Gruidae). It was established by Gaud (1968) and originally included three species: *Geranolichus gruis* (Trouessart, 1884) from the Common Crane *Grus grus*, *G. brachychaetus* Gaud 1968 from the Black Crowned Crane *Balearica pavonina* (Linnaeus) and *G. tetrachaetus* Gaud, 1968 from the Grey Crowned Crane *B. regulorum* (Bennet). Further, Atyeo and Windingstad (1979) described *G. canadensis* Atyeo and Windingstad, 1979 from the Sandhill Crane *Antigone canadensis tabida* (Peters, JL). Soon after, each of the two mite species from crowned cranes (*Balearica*) has been placed in separate monobasic

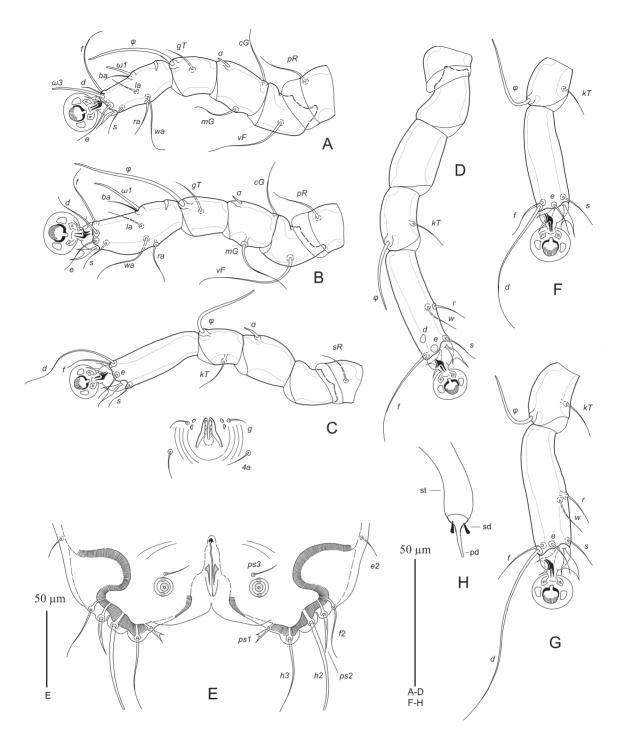


Fig. 6. *Pseudogabucinia malovichkoae* sp.n., details. A–D—legs I–IV of male, respectively, E—genital apparatus and opisthosoma of male, ventral view, F, G—tibiae and tarsi III, IV of female, respectively; H—spermatheca. Abbreviations: pd—primary spermaduct, sd—secondary spermaduct, sp—spermatheca.

genera, *Apatelacarus* Atyeo and Gaud, 1980 and *Doleracarus* Atyeo and Gaud, 1980, respectively (Atyeo and Gaud, 1980).

Geranolichus gruis, the type species of the genus, is provided herein with a modern descrip-

tion based on the newly collected material from the Common Crane in the south of European Russia. Although this species is well known to researchers, it was illustrated only by Berlese (1897). Dubinin (1956) reported *Geranolichus* gruis from Grus grus from several localities in Russia (Leningradskaya Oblast, Mordovia, Transcaucasia and Zabaykalsky Krai) and briefly redescribed it, but provided illustrations which were modified from Berlese's (1897) drawings.

Geranolichus gruis (Trouessart, 1884)

(Figs. 7–10)

Pterolichus (Pseudalloptes) gruis Trouessart, 1884: 572; Trouessart and Mégnin 1885: 66; Berlese 1897: fasc. 81, No 4; Canestrini and Kramer 1899: 59.

Thecarthra gruis: Oudemens 1904: 192. *Pseudalloptes gruis*: Radford 1953: 203, 1958: 124.

Pseudalloptinus gruis: Dubinin 1956: 169, fig. 53.

Geranolichus gruis: Gaud 1968: 90; Atyeo and Windingstad 1979: 651; Atyeo and Gaud 1980: 488.

Material examined. 15 males and 20 females (ZISP 23807–23841) from *Grus grus* (Linnaeus, 1758) (Gruiformes: Gruidae), Russia, Stavropolsky Krai, Turkmen District, near Poperechnyi, 45°25′

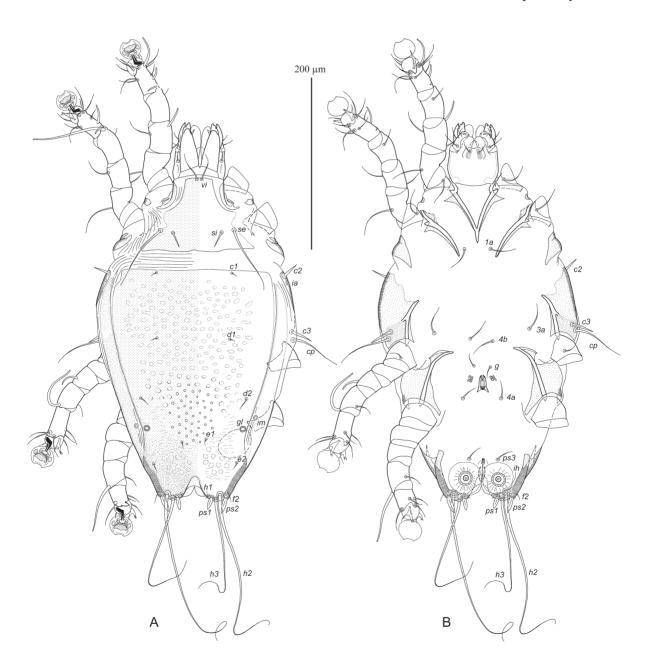


Fig. 7. Geranolichus gruis (Trouessart, 1884), male. A—dorsal view, B—ventral view.

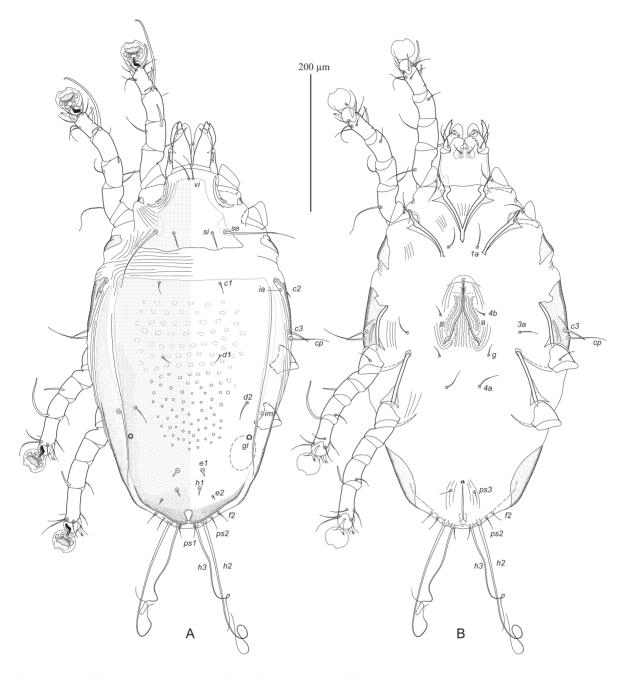


Fig. 8. Geranolichus gruis (Trouessart, 1884), female. A—dorsal view, B—ventral view.

22"N 43°15'28"E, 10 November 2022, coll. L.V. Malovichko.

Description. *Male* (range for 10 specimens) (Figs. 7, 9A, B, 10A–E). Odiosoma ovate, length × width, 365–385 × 220–235; length of hysterosoma 270–280. Subcapitulum trapezoidal, 45–50 × 62–65. Prodorsal shield nearly triangular in shape, anterolateral extensions short and rounded, lateral margins with small incision anterior to bases of setae *se*, posterior margin straight, posterior corners pointed, length along midline 80–90,

width at posterior margin 125–135. Setae *vi* filiform, 28–35 long. Distance between scapular setae *se* 85–90. Setae *si* thin spiculiform, 15–18 long, separated by 58–65. Scapular shields small. Humeral shields fused ventrally with epimerites III. Setae *c2* small, spiculiform, 18–20 long, situated in anterior end of humeral shields. Subhumeral setae *c3* thick, spiculiform, 20–28 long. Hysteronotal shield: covering almost entire surface of dorsal hysterosoma; anterior margin straight; lateral margins slightly convex at level of humeral shield and

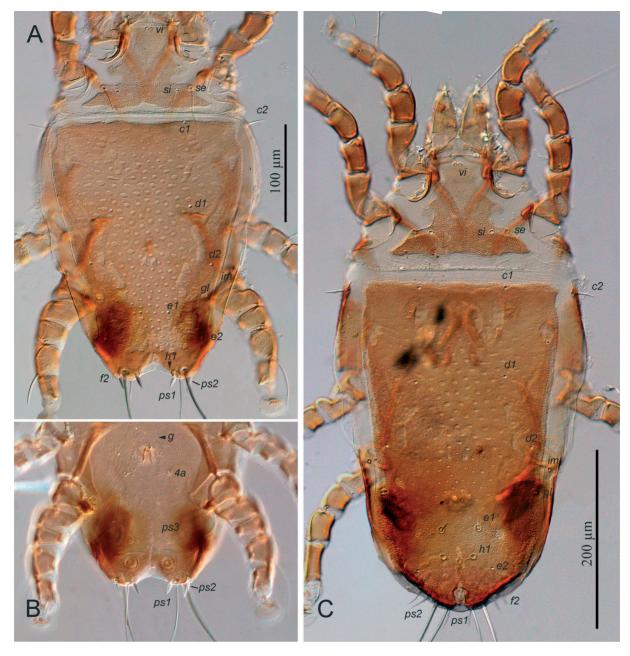


Fig. 9. Geranolichus gruis (Trouessart, 1884). A—dorsal view of male idiosoma, B—ventral view of male hysterosom, C—dorsal view of female idiosima.

gradually attenuate to posterior end of opisthosoma; entire surface with small circular lacunae, these lacunae smaller and clearly pronounced in posterior part; length 260–270, greatest width at level of humeral shields 185–200. Lateral sclerotized bands close to lateral margins of hysteronotal shield, their anterior ends extending almost to level of setae c2, posterior ends fused with opisthosomal part of hysteronotal shield. Hysteronotal gland openings gl on hysteronotal shield near lateral margins. Cupules ia on humeral shield near setae c2, cupules im on lateral sclerotized bands,

slightly anterior to level of openings *gl*. Opisthosomal lobes short, twice as wide at base than long, posterior margin widely rounded. Terminal cleft small, semicircular, 15–18 long. Supranal concavity open posteriorly. Posterior margin of opisthosomal lobes with setae *h2* and *h3* represented by macrosetae, setae *ps1* and *ps2* lanceolate, setae *f2* short filiform, and setae *h1* minute filiform. Setae *ps1* and *ps2* 13–16 and 18–22 long, respectively. Setae *h1* situated mesal to bases of setae *ps1*. Setae *f2* slightly anterior to bases of setae *ps2*. Distances between dorsal setae: *c2:d2* 135–145, *d2:e2* 75–88,

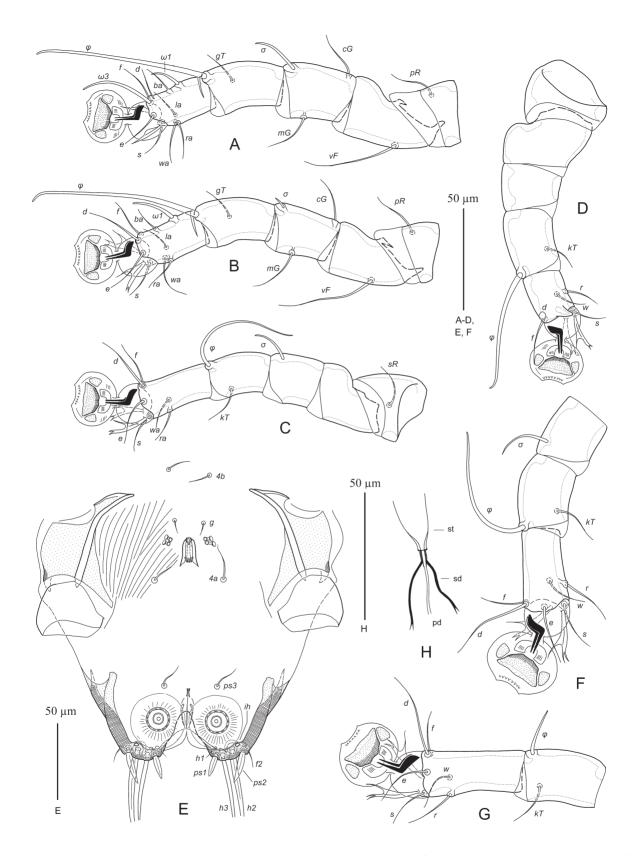


Fig. 10. *Geranolichus gruis* (Trouessart, 1884), details. A–D— legs I–IV of male, respectively E—ventral view of male opisthosoma; F—genu, tibia and tarsus III of female, G—tibia and tarsus IV of female, H—spermatheca. Abbreviations: pd—primary spermaduct, sd—secondary spermaduct, sp—spermatheca.

d2:gl 35–42, *e2:h3* 40–48, *d1:d2* 50–70, *e1:e2* 22–35, *h2:h2* 58–65, *h3:h3* 45–50, *ps1:ps1* 38–40.

Epimerites I fused in a Y, stem about 1/3 the total length of epimerites. Epimerites I, II without extensively sclerotized areas. Epimerites IV with triangular sclerotized areas flanking bases of trochanters IV. Genital apparatus between levels of trochanters III and IV. Genital arch 17-20 × 11-13, aedeagus barely protruding from genital arch. Genital papillae connected at bases, situated at level of anterior part of genital arch. Setae 4b slightly posterior to level of setae 3a. Setae g anterior to level of genital arch apex. Setae 4a posterior to level of genital arch tips. Cupules ih large ovate, situated anterolateral to bases of setae h2. Ventral margins of hysteronotal shield form adanal apodemes flanking anal area laterally. Adanal suckers 16-18 in diameter, corolla without denticles, surrounding membrane with sparse fine striae. Distances between ventral setae: 4b:g 30–34, *g*: 4*a* 35–40, 4*a*: *ps* 370–78, *ps* 3: *h* 340–45, ps3:ps3 35-43.

Ambulacral discs of all legs with slightly concave distal margin. Legs I, II without apophyses and enlargements. Legs IV shorter and thicker than legs III, with tarsus extending beyond apices of opisthosomal lobes. Tarsus IV with subapical spinelike process, seta *d* button-like, seta *e* absent. Lengths of tarsi: I 30–33, II 33–35, III 33–35, IV 21–23. Lengths of solenidia: ω1I 12–15, ω1II 18–20, σI 18–22, σII 5–6, σIII 15–18, φIV 53–58.

Female (range for 10 specimens) (Figs. 8, 9C, 10F-H). Odiosoma ovate, length × width, 475- $530 \times 270-300$; length of hysterosoma 350–380. Gnathosoma trapezoidal, $50-57 \times 73-78$. Prodorsal shield shaped as in the male, length along midline 95-110, width at posterior margin 145-160. Setae vi filiform, 40-50 long. Distance between scapular setae se 95-105. Setae si thin spiculiform, 20-25 long, separated by 58-68. Scapular shields small. Humeral shields fused ventrally with epimerites III. Setae c2 small spiculiform, 23-25 long, situated in anterior end of humeral shields. Subhumeral setae c3 thick spiculiform, 25–30 long. Hysteronotal shield: covering almost entire surface of dorsal hysterosoma, anterior margin straight, lateral margins slightly convex at level of humeral shield and trochanters III, anterior ²/₃ with small circular lacunae, lacunae in central area noticeably smaller and clearly pronounced; length 335–360, greatest width 205–235. Lateral sclerotized bands close to lateral margins of hysteronotal shield, their anterior ends extending to humeral shield, posterior ends fused with opisthosomal part of hysteronotal shield. Hysteronotal gland openings gl on hysteronotal shield near lateral margins. Cupules ia on humeral shield posterior to setae c2, cupules im on lateral sclerotized bands, slightly posterior to level of setae d2. Setae el and hl short, spiculiform, about 10 long, arranged in a rectangle (rarely trapezoid) in rear quarter of opisthosoma. Setae e2 situated posterolateral to setae h1 and closer to midline than lateral setae f2. Opisthosoma widely rounded posteriorly, with smoothed median extension. Supranal concavity small, roughly ovate. Distances between dorsal setae: c2:d2 60-175, d2:e2 130-160, d2:gl 45-50, e2:h3 28-42, d1:d2 60-70, e1:e2 38-60, h1:h3 50-60, e1:h1 25-32, e1:e1 33-36, h1:h1 32-50, *h2:h2* 48-52, *h3:h3* 24-26.

Epimerites I fused in a Y, with stem about 1/4 the total length of epimerites. Epimerites of all coxa without sclerotized areas. Epimerites IVa thin, barely distinct. Epigynum poorly sclerotized, represented by bow-shaped fold covering anterior end of oviporus, $10-15 \times 35-45$. Setae g posterior to level of setae 3a. Copulatory opening terminal. Head of spermatheca as in Fig. 10H; length of secondary spermaducts 20-22 long. Distances between ventral setae: 4b:3a 25-35, 3a:g 20-32, g:4a 30-40.

Legs I, II as in the male. Legs IV with ambulacral discs extending beyond posterior margin of opisthosoma. Lengths of tarsi: I 38–40, II 40–43, III 38–43, IV 48–50. Lengths of solenidia: ω 1I 13–16, ω 1II 19–21, σ I 26–28, σ II 4–5, σ III 18–24, ω 1II 65–68, ω 1V 25–28.

Remark. Geranolichus gruis differs from the second species of the genus, G. canadensis, in having the following features. In males of G. gruis, the anterolateral projections of the prodorsal shield short and rounded, not extending to lateral margins of propodosoma; cupules im are closer to the level of gland openings gl than to setae d2; the terminal cleft is distinct and extends to or beyond the level of setae h2; and setae h1 are situated mesal to bases of setae ps1. In females of G. gruis, the hysteronotal gland openings gl are closer to the level of setae d2 than to that of setae e1, and solenidion σIII is about ²/₃ the length of genu III. In males of G. canadensis, the anterolateral projections extend to the lateral margins of propodosoma; cupules im are closer to the level of setae d2 than to that of gland openings gl; the terminal cleft is small,

bluntly-angular; and setae hI are anterior to the bases of setae psI. In females of G. canadensis, gland openings gI are closer to the level of setae eI than to that of setae d2, and solenidion σ III is shorter than the half-length of genu III.

Superfamily Analgoidea Trouessart and Mégnin, 1984

Family **Analgidae Trouessart and Mégnin**, **1984**

Subfamily Megniniinae Gaud and Atyeo, 1982

Genus Megniniella Gaud, 1958

Type species: *Dermaleichus gallinulae* Buchholz, 1869, by subsequent designation (Gaud and Mouchet 1959a).

The genus *Megniniella* is restricted to Gruiformes and for a long time has included only the species known from rails (Rallidae), the largest family of gruiforms (Gaud 1958, 1968; Gaud and Mouchet 1959a; Mironov and Galloway 2002). Mironov and Malovichko (2023) have recently described *Megniniella gruophila* Mironov and Malovichko, 2023 from the Common Crane and provided an updated world checklist of this genus with ten valid species.

Remark. It is highly possible that *Megninia* fornicata Trouessart, 1899, described from the Limpkin, Aramus guarauna (Linnaeus) (Gruiformes: Aramidae) in South America (Trouessart 1899), also belongs to the genus Megniiella. This question can be solved after the investigation of the type specimens or some newly recollected material from this host.

Megniniella gruophila Mironov and Malovichko, 2023

(Fig. 11)

Megniniella gruophila Mironov and Malovichko, 2023: 1556, Figs. 1–4.

Material examined. Male holotype (ZISP 22 250), 21 male and 14 female paratypes (22 251–22 275, 22 359–22 368) from *Grus grus* (Linnaeus, 1758) (Gruiformes: Gruidae), Russia, Stavropolsky Krai, Turkmen District, near Poperechnyi, 45°25′22″N 43°15′28″E, 10 November 2022, coll. L.V. Malovichko.

Megniniella gruophila associated with the Common Crane is the only species of the genus Megn-

iniella known thus far from the family of cranes (Gruidae). This finding gives reason to expect that more *Megniniella* species could be collected from other representatives of this host family.

Family **Alloptidae Gaud, 1957**Subfamily **Alloptinae Gaud, 1957**Genus *Brephosceles* **Hull, 1934**

Type species: *Pterolichus forficiger* Mégnin and Trouessart, 1884, by original designation.

The genus *Brephosceles* currently includes 52 species associated with the aquatic birds of the orders Anseriformes, Charadriiformes, Gaviiformes, Gruiformes, and Procellariiformes (Hull 1934; Dubinin 1951, 1952; Gaud 1953, 1957, 1968; Peterson and Atyeo 1968; Atyeo and Peterson 1970; Peterson 1971; Vasyukova and Mironov 1986, 1991; Mironov *et al.* 2022).

In the world taxonomic revision of this genus, Peterson (1971) provided unified (re)descriptions and a key to the species known at the time, arranging them in six species groups. Phylogenetic analysis of the family Alloptidae, based on morphological characters (Mironov 2007), supported the monophyly of the clade, incorporating all *Brephosceles* species groups recognized by Peterson (1971). However, the above analysis also showed that this genus is apparently paraphyletic, because this clade also incorporates several closely related but derived genera, including *Alloptoides* Gaud, 1961, *Dichobrephosceles* Peterson and Atyeo, 1968, *Homeobrephosceles* Peterson and Atyeo, 1968 and *Onychalloptes* Peterson and Atyeo, 1968.

Two formerly known species belonging to the *geranoxenus* species group were previously known from cranes: *Brephosceles geranoxenus* Peterson, 1968 from *Balearics regulorum* in Zambia (Nyassaland and Northern Rhodesia) and *Br. petersoni* Atyeo and Windingstad, 1979 from *Antigone canadensis tabida* in Wisconsin, the USA (Gaud 1968; Atyeo and Windingstad 1979).

Brephosceles sp.

(Fig. 12)

Material examined. 1 female and 2 tritonymphs from *Grus grus* (Linnaeus, 1758) (Gruiformes: Gruidae), Russia, Stavropolsky Krai, Turkmen District, near Poperechnyi, 45°25′22″N 43°15′28″E, 10 November 2022, coll. L.V. Malovichko.

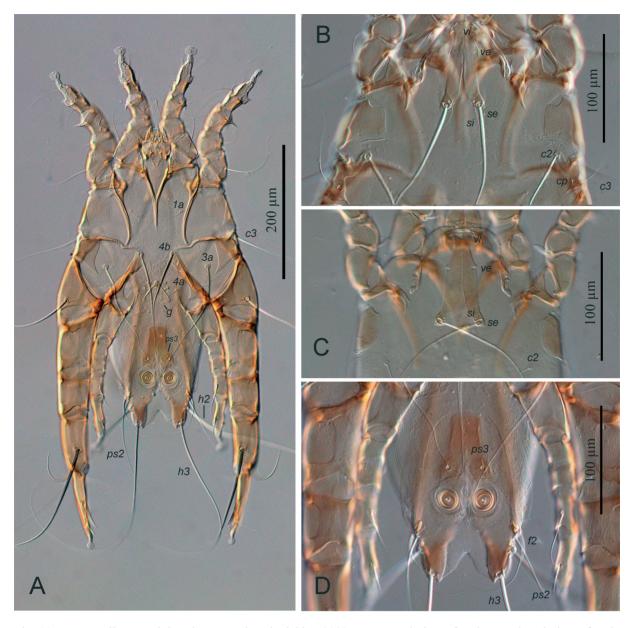


Fig. 11. *Megniniella gruophila* Mironov and Malovichko, 2023. A—ventral view of male, B—dorsal view of male prodorsum, C—dorsal view of female prodorsum, D—ventral view of male opisthosoma.

Only one female and one tritonymph of the genus *Brephosceles* have been collected from the Common Crane specimens using a washing technique. This mite belongs to the *geranoxenus* species group and apparently represents an undescribed species, but its description, based only on a single female, seems invalid at this time.

Remark. These specimens could potentially be *Brephosceles discurus* (Trouessart, 1885) described from *Grus grus*, whose identity is not sufficiently clear. Trouessart (1885: 74) described this mite as a subspecies *Pterodectes* (*Pterocolus*) *flagellifer discurus*, providing only a few male

characteristics. Since the species *P.* (*Pt.*) flagel-lifer Trouessart, 1885 associated with the Common Sandpiper Actitis hypoleucos (Linnaeus) appeared a junior synonym and was synonymized with Dermaleichus actitidis Canestrini, 1878 from the same host, the subspecies discurus was given the subspecies name Pterodectes actitidis discura (Trouessart, 1885) (Canestrini and Kramer 1899; Radford 1953, 1958). In the preliminary revision of the genus Brephosceles and related genera, Peterson and Atyeo (1968) treated this subspecies as a full species Brephosceles discurus (Trouessart, 1885), while the

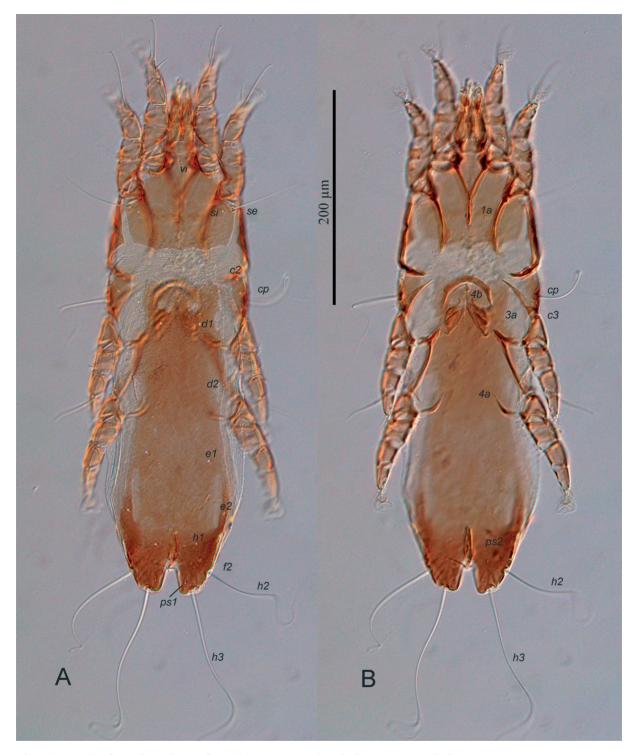


Fig. 12. Female of Brephosceles sp. from Grus grus. A—dorsal view; B—ventral view.

nominal subspecies *Dermaleichus actitidis* was placed in a separate genus *Dichobrephosceles* Peterson and Atyeo, 1968. However, Peterson (1971) did not subsequently consider *B. discurus* in the world revision of the genus *Brephosceles*, and did not even mention it in his work. It is possible that Peterson could not relate this mite to

any of the recognized species groups of the genus, because the original description by Trouessart (1885) was quite scanty. The type specimens of this mite are probably lost, because this species is not mentioned in a hand-written catalog of the Trouessart's collection, generated by the late Prof. Jean Gaud in the 1980s.

ACKNOWLEDGEMENTS

The author thanks Aleksandr V. Matyukhin (A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia) for the delivery of crane specimens to the Zoological Institute RAS. This study was supported by the Ministry of Science and Higher Education of the Russian Federation (project № 125013001089-0).

REFERENCES

- Atyeo, W.T. and Gaud, J. 1977. Gruiformes, a new host group for pterodectine feather mites (Acarina: Analgoidea). *Journal of Parasitology*, 63: 141–144.
- Atyeo, W.T. and Gaud, J. (1979) 1980. *Geranolichus* Gaud and related genera (Acarina, Analgoidea, Pterolichidae). *Acarologia*, 21: 487–495.
- Atyeo, W.T. and Gaud, J. 1984. The feather mites (Acarina) of the Psophiidae (Aves). *Acarologia*, 25: 365–375.
- Atyeo, W.T. and Peterson, P.C. 1970. Acarina: Astigmata: Analgoidea: Feather mites of South Georgia and Heard Islands. *Pacific Insects Monograph*, 23, 121–151.
- Atyeo, W.T. and Peterson, P.C. 1976. The feather mite genera *Zumptia* Gaud & Mouchet and *Parazumptia* gen. nov. (Acarina, Analgoidea). *Tijdschrift voor Entomologie*, 119: 327–335.
- Atyeo, W.T. and Windingstad, R.M. 1979. Feather mites of the greater sandhill crane. *Journal of Parasitology*, 65: 650–658.
- Berlese, A. 1897. *Pterolichus (Pseudalloptes) Gruis* Trouess. et Mégn. In: A. Berlese, *Acari, Myriopoda et Scorpiones Hucusque in Italia Reperta*. Padova, Fasc. 81, No. 4.
- Canestrini, G. and Berlese, A. (1881) 1882. Nuovi Acari. *Atti della Società Veneto-Trentina di Scienze Naturali*, 7(2): 145–153 + pls. XIX–XXI.
- Canestrini, G. and Kramer, P. 1899. Demodicidae und Sarcoptidae. *Das Tierreich*, 7: 1–193. https://doi.org/10.5962/bhl.title.1226
- Černý, V. 1967. Trois espèces nouvelles des Acariens plumicoles (Analgoidea) parasites des Procellariiformes. *Folia Parasitologica*, 14: 87–91.
- Dabert, J. (2004) 2005. Feather mites (Astigmata; Pterolichoidea, Analgoidea) and birds as models for cophylogenetic studies. In: G. Weigmann, G. Alberti, A. Woltman and S. Ragusa (Eds.), Acarina Biodiversity in the Natural and Human Sphere. Proceedings of the V Symposium of the EURAAC. Phytophaga, 14: 409–424.

- Dabert, J. and Labrzicka, A. 2009. Szeptyckiana, a new genus of the feather mite family Pterolichidae (Acari, Astigmata, Pterolichoidea) from the Blackthighed Falconet Microhierax fringillarius (Falconiformes, Falconidae). Acta Zoologica Cracoviensia, 52B(1-2): 61–72.
- Dabert, J. and Mironov, S. V. 1999. Origin and evolution of feather mites (Astigmata). *Experimental and Applied Acarology*, 23: 437–454.
- Dabert J., Natress B., Dabert M. 2008. *Xoloptes blaszaki* sp.n. (Pterolichoidea: Pterolichidae)—A new species of feather mite from *Alectorius rufa* (Galliformes Phasianidae) from Europe with DNA barcode data. *Annales Zoologici*, 58(2): 391–396.
- Dubinin, V.B. 1951. Feather mites of birds of the Baraba Steppe. Report I. Feather mites of waterfowl and wading birds of the orders of rails, grebes, palmipedes, anserines, herons, gulls, and limicoles. *Parazitologicheskii Sbornik*, 13: 120–256. [In Russian]
- Dubinin, V.B. 1952. Feather mites of birds of Wrangel Island. *Trudy Zoologicheskogo Instituta*. *Akademii Nauk SSSR*, 12: 251–268. [In Russian]
- Dubinin, V.B. 1956. Per 'evye kleshchi (Analgesoidea).

 Chast' III. Semeistvo Pterolichidae. Fauna SSSR,
 Paukoobraznye [Feather Mites (Analgesoidea).

 Part III. Family Pterolichidae. Fauna of the USSR,
 Arachnids]. Vol. 6, Fasc. 7. AN SSSR, Moscow–
 Leningrad, 813 pp. [In Russian]
- Galloway, T.D. and Lamb, R.J. 2014. Abundance and stability are species traits for four chewing lice (Phthiraptera: Menoponidae, Philopteridae) on feral pigeons, *Columba livia* Gmelin (Aves: Columbiformes: Columbidae). *The Canadian Entomologist*, 146 (4): 444–456. https://doi.org/10.4039/tce.2013.86
- Gaud, J. 1953. Sarcoptides plumicoles des oiseaux d'Afrique occidentale et centrale. *Annales de Parasitologie Humaine et Comparée*, 28: 193–226. https://doi.org/10.1051/parasite/1953283193
- Gaud, J. 1957. Acariens plumicoles (Analgesoidea) parasites des oiseaux du Maroc. I. Proctophyllodidae. *Bulletin de la Société de Sciences naturelles et physiques du Maroc*, 37: 105–136.
- Gaud, J. 1958. Acariens plumicoles (Analgesoidea) parasites des oiseaux du Maroc. II. Analgidae. Bulletin de la Société de Sciences Naturelles et Physiques du Maroc, 38: 27–49.
- Gaud, J. 1960. Quelques Sarcoptiformes plumicoles du Congo belge (Analgesoïdea). *Revue de Zoologie et de Botanique Africaines*, 61: 133–159.
- Gaud, J. 1968. Acariens sarcoptiformes plumicoles (Analgoidea) parasites sur les oiseaux Ralliformes et Gruiformes d'Afrique. *Annales du Musée Royale*

- de l'Afrique Centrale, Sér. in-8°, Sciences Zoologiques, 164: 1–101.
- Gaud, J. 1982. Acariens Sarcoptiformes plumicoles des oiseaux Ciconiiformes d'Afrique. II. Parasites des Ciconiidae, Scopidae et Phoenicopteridae. Revue de Zoologie Africaine, 96: 335–357.
- Gaud, J. 1983. Acariens Sarcoptiformes plumicoles des oiseaux Falconiformes d'Afrique. I.—Introduction: Parasites des Falconidae, des Pandionidae et des Elanions. Revue de Zoologie Africaine, 97: 721–736.
- Gaud, J. and Atyeo, W.T. 1981. La famille Xolalgidae Dubinin (Acariens plumicoles, Analgoidea). II. Sous-familles Xolalginae et Zumptiinae, n. sub-fam. *Acarologia*, 22: 313–324.
- Gaud, J. and Atyeo, W.T. 1982. Spécificité parasitaire chez les acariens Sarcoptiformes plumicoles. Mémoires du Muséum National d'Histoire Naturelle, N.S., Sér. A, Zoologie, 123: 247–254.
- Gaud, J. and Atyeo, W.T. 1996. Feather mites of the World (Acarina, Astigmata): the supraspecific taxa. *Musée Royal de l'Afrique Centrale, Annales, Sciences Zoologiques,* 277 (Pt. 1): 1–193 (text) and (Pt. 2): 1–436 (illustrations).
- Gaud, J. and Mouchet, J. 1959a. Acariens plumicoles (Analgesoidea) parasites des oiseaux du Cameroun. II. Analgesidae. Annales de Parasitologie Humaine et Comparée, 34: 149–208.
- Gaud, J. and Mouchet, J. 1959b. Acariens plumicoles des oiseaux du Cameroun. V. Pterolichidae. (1re Partie). Annales de Parasitologie Humaine et Comparée, 34: 493–545.
- Gaud, J. and Mouchet, J. 1961. Deux genres nouveaux de Sarcoptiformes plumicoles. Un nouveau critère dans la systematique des Analgesoidea. *Acarolo*gia, 3: 591–598.
- Gaud, J. and Mouchet, J. 1963. Révision des genres Grallobia Hull et Grallolichus Gaud (Pterolichidae). Acarologia, 5: 628–643.
- Gill, F., Donsker, D. and Rasmussen, P. (Eds.). 2025. IOC World Bird List (v. 15.1). https://doi.org/10.14344/IOC.ML.15.1. Retrieved 25 May 2025 from http://www.worldbirdnames.org/
- Hernandes, F.A. 2020. A review of the feather mite family Gabuciniidae Gaud & Atyeo (Acariformes: Astigmata: Pterolichoidea) of Brazil, with descriptions of eleven new species. *Zootaxa*, 4747(1): 1–53.
- Hernandes, F.A. and Mironov, S.V. 2015. The feather mites of the hoatzin *Opisthocomus hoazin* (Müller) (Aves: Opisthocomiformes), with description of two new genera and six new species (Acari: Analgoidea, Pterolichoidea). *Zootaxa*, 4034(3): 401–444.

- Hull, J.E. 1934. Concerning British Analgidae (Feathermites). *Transactions of the Northern Naturalists' Union*, 1: 200–206.
- Krantz, G.W. and Walter, D.E. (Eds.). 2009. *A Manual of Acarology*. 3rd Edition. Texas Tech University Press, Lubbock, TX, USA, pp. 565–657.
- Lepage, D. 2025. Common Crane—Avibase—the World Bird Database (bsc-eoc.org). Retrieved 23 May 2025 from https://avibase.bsc-eoc.org/species.jsp?avibaseid=99B8841E
- Mironov, S.V. 1981. Feather mites of the genus *Metanalges* (Sarcoptiformes, Analgoidea) of the USSR fauna. *Parazitologiya*, 15(5): 459–468. [In Russian with English summary]
- Mironov, S. V. 2007. Phylogeny of the feather mite family Alloptidae and coevolutionary trends with aquatic birds. In: J.B. Morales-Malacara, V. Behan-Pelletier, E. Ueckermann, T.M. Perez, E. Estrada-Venegas and M. Badii (Eds.), *Acarology XI: Proceedings of the International Congress* (Merida, Yucatan, Mexico, 8–13 September 2002). Instituto de Biololgía and Facultad de Ciencias, Universidad Nacional Autónoma de México; Sociedad Latinoamericana de Acarología, México, pp. 617–634.
- Mironov, S. V. 2016. Chapter V. Host-parasite relations of mites of the parvorder Psoroptidia (Acariformes: Astigmata) with birds. In: K. V. Galaktionov (Ed.), Coevolution of Parasites and Hosts. Proceedings of the Zoological Institute of the Russian Academy of Sciences. Vol. 320, Suppl. 4, pp. 264–348. [In Russian with English summary]
- Mironov, S. V. 2024. A new feather mite genus of the family Pterolichidae (Acariformes) from the common pheasant, *Phasianus colchicus*, with a checklist of pterolichines associated with galliform birds (Aves: Galliformes). *Acarina*, 32(2): 107–128. https://doi.org/10.21684/0132-8077-2024-32-2-107-128
- Mironov, S.V. and Chirov, P.A. 2017. Superfamily group Sarcoptiformes plumicoles. In: P.A. Chirov and A.B. Kharadov (Eds.), *Opredelitel' Paraziticheskikh Kleshchei (Acariformes, Parasitiformes) Kyrgyzstana* [Identification Guide of Parasitic Mites (Acariformes, Parasitiformes) of Kyrgyzstan]. Maxprint, Bishkek, pp. 30–107. [In Russian]
- Mironov, S.V. and Galloway, T.D. 2002. Four new feather mite species (Acari: Analgoidea) from some birds in Canada. *The Canadian Entomologist*, 134: 605–618.
- Mironov, S. V., González-Solís, J., Mihalca, A. D. and Stefan, L. M. 2022. Feather mites of the genus *Brephosceles* Hull, 1934 (Acariformes: Alloptidae) from the European Storm Petrel *Hydrobates pe*-

- lagicus (Procellariiformes: Hydrobatidae). Systematic and Applied Acarology, 27 (7): 1273–1294.
- Mironov, S. V., Haarder, S. and Galloway, T.D. 2024. A new feather mite species of the genus *Temnalges* (Acariformes: Psoroptoididae) from coots, *Fulica* spp. (Gruiformes: Rallidae). *Acarologia*, 64(4): 1106–1116.
- Mironov, S.V., Hernandes, F.A. and Pedroso, L.G. 2015. New feather mites of the genera *Aniacarus* and *Aniibius* (Acariformes: Pterolichidae) from two cuckoo species (Cuculiformes: Cuculidae) in Brazil. *Zootaxa*, 3937(1): 103–126.
- Mironov, S. V. and Malovichko, L. V. 2023. A new feather mite of the genus *Megniniella* (Acariformes: Analgidae) from the Common Crane *Grus grus* (Gruiformes: Gruidae). *Systematic and Applied Acarology*, 28(9): 1553–1564. https://doi.org/10.11158/saa.28.9.8
- Norton, R. (1998) Morphological evidence for the evolutionary origin of Astigmata (Acari: Acariformes). *Experimental and Applied Acarology*, 22: 559–594.
- OConnor, B. M. 2009. Cohort Astigmatina. In: G.W. Krantz and D.E. Walter (Eds.), *A Manual of Acarology*. 3rd Edition. Texas Tech University Press, Lubbock, TX, USA, pp. 565–657.
- Oudemans, A.C. 1904. Acarologische Aanteekeningen XIV. *Entomologische Berichten*, 1: 190–195.
- Peterson, P.C. 1971. A revision of the feather mite genus *Brephosceles* (Proctophyllodidae: Alloptinae). *Bulletin of the University of Nebraska State Museum*, 9: 89–172.
- Peterson, P.C., 1975. An analysis of host-parasite associations among feather mites (Acari: Analgoidea). *Miscellaneous Publications of the Entomological Society of America*, 9: 237–242.
- Peterson, P.C. and Atyeo, W.T 1968. New genera related to the genus *Brephosceles* Hull, 1934 (Acarina: Proctophyllodidae). *Bulletin of the University of Nebraska State Museum*, 8: 217–236.
- Proctor, H.C. 2003. Feather mites (Acari: Astigmata): ecology, behavior and evolution. *Annual Review of Entomology* 48, 185–209.
- Proctor, H.C. and Owens, I. 2000. Mites and birds: diversity, parasitism and coevolution. *Trends in Ecology & Evolution* 15, 358–364.

- Radford, C.D. 1953. The mites (Acarina: Analgesidae) living on or in the feathers of birds. *Parasitology*, 42: 199–230.
- Radford, C.D. 1958. The host-parasite relationships of the feather mites (Acarina: Analgesoidea). *Revista Brasileira de Entomologia*, 8: 107–170.
- Trouessart, E.L. 1884. Les Sarcoptides plumicoles. *Journal de Micrographie*, 8: 527–532, 572–579.
- Trouessart, E.L. (1884) 1885. Note sur le classification des Analgésiens et diagnoses d'espèces et de genres nouveaux. *Bulletin de la Société d'Etudes Scientifiques d'Angers*, 14: 46–89.
- Trouessart, E.L. (1898) 1899. Diagnoses préliminaires d'espèces nouvelles d'Acariens plumicoles. Additions et corrections à la sous-famille des Analgésinés. Bulletin de la Société d'Études Scientifiques d'Anger, 28: 1–62.
- Trouessart, E.L. and Mégnin, P. 1885. Les Sarcoptides plumicoles ou Analgésinés. Revision de la susfamille Analgesinae. Octave Doin, Paris, 84 pp. + 2 pls.
- Vasyukova, T.T. and Mironov, S.V. 1986. *Novye Vidy Per'evykh Kleshchei Ptits Sibiri* [New Species of Feather Mites of Siberia]. Nauka, Siberian Dept., Novosibirsk, 72 pp. [In Russian]
- Vasyukova, T.T. and Mironov, S.V. 1991. Per'evye Kleshchi Guseobraznykh i Rzhankoobraznykh Yakutii. Systematika [Feather Mites of Anseriformes and Charadriiformes of Yakutia. Systematics]. Nauka, Siberian Dept., Novosibirsk, 200 pp. [In Russian]
- Waki T., Mironov, S.V., Nakajima, A. and Shimano, S. 2023. A new feather mite of the genus *Pelargoli-chus* (Acariformes: Pterolichidae) from the Oriental White Stork *Ciconia boyciana* (Ciconiiformes: Ciconiidae) in Japan. *Systematic and Applied Acarology*, 28(3): 471–482.
- Waki, T., Mironov, S., Nakaya, Y., Nagamine, T. and Shimano, S. 2024. A new feather mite species of genus *Metanalges* (Acariformes: Analgidae) from the Okinawa Rail, *Hypotaenidia okinawae* (Gruiformes: Rallidae), in Okinawa Island, Japan. *Species Diversity*, 29: 1–9.