Journal:

2014. 22 (2)

Publicatione: 
OBSERVATION ON SILK PRODUCTION AND MORPHOLOGY OF SILK IN WATER MITES (ACARIFORMES: HYDRACHNIDIA)



About authors:

Shatrov A. B., Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, 199034, St-Petersburg, Russia

Soldatenko E. V., Smolensk State University, 214000, Przhevalskogo st. 4, Smolensk, Russia
Gavrilova O. V., St-Petersburg State University, 199034, Universitetskaya emb. 9, St-Petersburg, Russia

Annotation:

Adults of the following water mite species — Piona coccinea (C.L. Koch, 1836), Limnesia undulata (O.F. Müller, 1776), Limnesia maculata (O.F. Müller, 1776), Limnesia undulatoides (Davids, 1997), Hydryphantes ruber (de Geer, 1778) and Mideopsis orbicularis (O.F. Müller, 1776) maintaining in the laboratory for several months were shown to permanently produce various amount of silk in the form of long thin unbrunched threads. Morphology of these threads are similar in all studied species — they are stright, rigid, mostly hollow tubes of two dimension categories: thin 730±130 nm, and thick 1–2.5 μm in diameter.
Predominance of different thread types varies freely in different mite species. Specific staining reveals neither DNA nor microbial walls in threads composition, so the microbial origin of threads is excluded. Staining with Calcofluor White M2R fluorochrome definitely indicates that these threads belong to arthropod silk. Organization of the threads is found to be simplest among known spiders and insect’s silks. The observed silk formation does not correspond to the mite reproduction activity because has lasted from late summer till mid autumn where mites have already completed producing both eggs and spermatophores. Possible functions of the silk are discussed.

Bibliography:

Akai, H. 1982. The ultrastructure and functions of the
silk gland cells of Bombyx mori. In: R.C. King and
H. Akai (Eds.). Insect Ultrastructure, Vol. 2. Ple-
num Press, New York, London, pp. 323–364.

Alberti, G. and Coons, L.B. 1999. Acari — Mites. In:
F.W. Harrison (Ed.). Microscopic Anatomy of In-
vertebrates, Vol. 8 C. Wiley-Liss, New York, pp.
515–1265.

Alberti, G. and Crooker, A.R. 1985. Internal anatomy.
In: W. Helle and M.W. Sabelis (Eds.). Spider
Mites. Their Biology, Natural Enemies and Con-
trol, Vol. 1 A. Elsevier, Amsterdam etc., pp. 29–
62.

Alberti, G. and Ehrnsberger, R. 1977. Rasterelektro-
nenmikroskopische Untersuchungen zum spinn-
vermögen der Bdelliden und Cunaxiden (Acari,
Prostigmata). Acarologia, 19: 55–61.

Alberti, G. and Storch, V. 1974. Über Bau und Funktion
der Prosoma-Drüsen von Spinnmilben (Tetrany-
chidae, Trombidiformes). Zeitschrift für Morpho-
logie der Tiere, 79: 133–153.

Bolland, H.R. 1983. A description of Neophyllobius
aesculi n. sp. and its developmental stages (Acari:
Camerobiidae). Entomologische Berichten, 43:
42–47.

Clotuche, G., Le Goff, G., Mailleux, A-C., Deneu-
bourg, J-L., Detrain, C. and Hance, T. 2009. How
to visualize the spider mite silk. Microscopy Re-
search and Technique, 72: 659–664.

Clotuche, G., Mailleux, A-C., Astudillo F.A., Deneu-
bourg, J-L., Detrain, C., et al. 2011. The formation
of collective silk balls in the spider mite Tetrany-
chus urticae Koch. PLoS ONE, 6: e18854.
DOI:10.1371/journal.pone.0018854

Craig, C.L. 1997. Evolution of arthropod silks. Annual
Revue of Entomology, 42: 231–267.

Craig, C.L. 2003. Spiderwebs and Silk: Tracing Evolu-
tion from Molecules to Genes to Phenotypes. Ox-
ford Universitry Press Inc., Oxford. 230 pp.

Denny, M.W. 1976. The physical properties of spider’s
silk and their role in the design of orb-webs. Jour-
nal of Experimental Biology, 65: 483–506.

Foelix, R.F. 1996. Biology of Spiders. Oxford Univer-
sity Press Inc., Oxford. 325 pp.

Fernandez, A.A., Hance, T., Clotuche, G., Mailleux,
A-C. and Deneubourg, J.L. 2012. Testing for col-
lective choices in the two-spotted spider mite. Ex-
perimental and Applied Acarology, DOI: 10.1007/
s10493-012-9558-5.

Gerson, U. 1985. Webbing. In: W. Helle and M.W. Sa-
belis (Eds.). Spider Mites. Their Biology, Natural
Enemies and Control, Vol. 1 A. Elsevier, Amster-
dam etc., pp. 223–232.

Hazan, A., Gerson, U. and Tahori, A.S. 1974. Spider
mite webbing. I. The production of webbing under
various environmental conditions. Acarologia, 16:
68–84.

Johnson, M-L., Merritt, D.J., Cribb, B.W., Trent, C. and
Zalucki, M.P. 2006. Hidden trails: visualizing ar-
thropod silk. Entomologia Experimentalis et Ap-
plicata, 121: 271–274.

Kanazawa, M., Sahara, K. and Saito, Y. 2011. Silk
threads function as an ‘adhesive cleaner’ for nest
space in a social spider mite. Proceedings of the
Royal Society B: Biological Sciences, 278: 1653–
1660.

Kebede, A.T., Raina, S.K. and Kabaru, J.M. 2014.
Structure, composition, and properties of silk from
the african wild silkmoth, Anaphe panda (Boisdu-
val) (Lepidoptera: Thaumetopoeidae). Interna-
tional Journal of Insect Science, 6: 9–14.

Kerfoot, W.C. 1982. A question of taste: crypsis and
warning coloration in freshwater zooplankton
communities. Ecology, 63: 538–554.

Kirstein, K-G. and Martin, P. 2009. Die glandularien
der Wassermilben (Hydrachnidia, Acari) — ihre
Funktion als Wehrdrüsen. Deutsche Gesellschaft
fur Limnologie (DGL). Erweiterte Zusammenfas-
sungen der Jahrestagung 2008 (Konstanz), Har-
degsen 2009: 571–575.

Kirstein, K-G. and Martin, P. 2010. Die glandularien
der Wassermilben (Hydrachnidia, Acari) — Die
Wehrdrüsensekrete im Vergleich. Deutsche Ge-
sellschaft fur Limnologie (DGL). Erweiterte Zu-
sammenfassungen der Jahrestagung 2009 (Olden-
burg), Hardegsen 2010: 433–437.

Kovoor, J. and Zylberberg, L. 1980. Fine structural as-
pects of silk secretion in a spider (Araneus diade-
matus). I. Elaboration in the pyriform glands. Tis-
sue and Cell, 12: 547–556.

Kovoor, J. and Zylberberg, L. 1982. Fine structural as-
pects of silk secretion in a spider. II. Conduction in
the pyriform glands. Tissue and Cell, 14: 519–530.

Kristensen, N.P. (Ed.). 2003. Lepidoptera, Moths and
Butterflies. Vol. 2: Morphology, Physiology, and
Development. Handbook of Zoology. Vol. IV Ar-
thropoda: Insecta, Part 36. Walter de Gruyter,
Berlin, New-York. 564 pp.

Le Goff, G.J., Hance, T., Detrain, C., Deneubourg, J-L.,
Clotuche, G. and Mailleux, A-C. 2011. Impact of
starvation on the silk attractiveness in a weaving
mite, Tetranychus urticae (Acari: Tetranychidae).
Journal of Ethology: DOI 10.1007/s10164-011-
0305-x.

Manson, D.C.M., Gerson, U. 1996. Web spinning, wax
secretion and liquid secretion by Eriophyoid mites.
In: E.E. Lindquist, M.W. Sabelis, J. Bruin (Eds.).
Eriophyoid Mites — Their Biology, Natural Ene-
mies and Control, Elsevier, BV, pp. 251–258.

Mothes, U. and Seitz, K-A. 1981. Fine structure and
function of the prosomal glands of the two-spotted
spider mite, Tetranychus urticae (Acari, Tetrany-
chidae). Cell and Tissue Research, 221: 339–349.

Proctor, H. 1992. Mating and spermatophore morphol-
ogy of water mites (Acari: Parasitengona). Zoo-
logical Journal of the Linnean Society, 106: 341–
384.

Schaller, F. 1971. Indirect sperm transfer by soil arthro-
pods. Annual Review of Entomology, 16: 407–446.

Shatrov, A.B. 2000. Krasnotelkovie kleshchi i ikh para-
sitism na pozvonochnych zhivotnych [Trombicu-
lid Mites and Their Parasitism on Vertebrate
Hosts]. Publisher of the St.-Petersburg State Uni-
versity, St.-Petersburg, 276 pp. [in Russian with
English summary]

Shatrov, A.B. 2008. Organization of unusual idiosomal
glands in a water mite, Teutonia cometes (Teutoni-
idae). Experimental and Applied Acarology, 44:
249–263.

Shatrov, A.B. 2010. Comparative morphology, ultra-
structure and functions of the excretory organ
(postventricular midgut) in the Parasitengona
(Acariformes). Acarologia, 50: 93–112.

Shatrov, A.B. 2012. Anatomy and ultrastructure of the
salivary (prosomal) glands in unfed water mite
larvae Piona carnea (C.L. Koch, 1836) (Acari-
formes: Pionidae). Zoologischer Anzeiger, 251:
279–287.

Shatrov, A.B. 2013. Anatomy and ultrastructure of der-
mal glands in an adult water mite, Teutonia com-
etes (Koch, 1837) (Acariformes: Hydrachnidia:
Teutoniidae). Arthropod Structure and Develop-
ment, 42: 115–125.

Sokolov, I.I. 1925. [On the water mite fauna of the river
Oka with the additional data on the hydracarina
fauna of the city Murom environs.] Trudy Okskoy
biologicheskoy stantsii, 3: 17–35.

Sokolov, I.I. 1940. Faune de l’URSS. Arachnides. Vol.
V, No. 2 Hydracarina (1-re partie: Hydrachnel-
lae). Edition de l’Academie des Sciences de
l’URSS, Moscou, Leningrad. 510 pp. [In Russian]

Sokolow, I.I. 1977. The protective envelopes in the
eggs of Hydrachnellae. Zoologischer Anzeiger,
198: 36–46.

Vollrath, F., Holtet, T., Thøgersen, H.C., and Frische, S.
1996. Structural organization of spider silk. Pro-
ceedings of the Royal Society of London. Series B,
263: 147–151.

Wallace, M.M.H. and Mahon, J.A. 1972. The taxono-
my and biology of Australian Bdellidae (Acari). I.
Subfamilies Bdellinae, Spinibdellinae and Cyti-
nae. Acarologia, 14: 544–580.

Wiles, P.R. 1997. The homology of glands and glandu-
laria in the water mites (Acari: Hydrachnidia).
Journal of Natural History, 31: 1237–1251.

Witte, H. 1984. The evolution of the mechanisms of
reproduction in the Parasitengonae (Acarina:
Prostigmata). In: D.A. Griffiths and C.E. Bowman
(Eds.). Acarology VI, Vol. 1. Ellis Horwood,
Chichester, pp. 470–478.

Witte, H. 1991. Indirect sperm transfer in prostigmatic
mites from a phylogenetic viewpoint. In: R.
Schuster and P.W. Murphy (Eds.). The Acari: Re-
production, Development and Life History Strate-
gies. Chapman & Hall, London, pp. 173–178.

Witte, H. and Döring, D. 1999. Canalized pathways of
change and constraints in the evolution of repro-
ductive modes of microarthropods. Experimental
and Applied Acarology, 23: 181–216.

Yano, S. 2012. Cooperative web sharing against preda-
tors promotes group living in spider mites. Behav-
ioral Ecology and Sociobiology, URL: http://hdl.
handle.net/2433/153051