THE COMPLETE MITOCHONDRIAL GENOME OF NEOSEIULUS CALIFORNICUS (MESOSTIGMATA, PHYTOSEIIDAE) AND CONTROL REGION POLYMORPHISM

Journal:

2023. 31 (2)

Publicatione: 
THE COMPLETE MITOCHONDRIAL GENOME OF NEOSEIULUS CALIFORNICUS (MESOSTIGMATA, PHYTOSEIIDAE) AND CONTROL REGION POLYMORPHISM



About authors:

L. A. Uroshlev,

Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia


O. V. Vasilenko,

All-Russian Collection of Microorganisms (VKM), G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Russia
vkm@ibpmpushchino.ru


Y. I. Meshkov,

All-Russian Scientific Research Institute of Phytopathology, Moskovskaya Oblast, Odintsovsky Rayon, Bolshiye Vyazyomy, Russia
vniif@vniif.ru


B. V. Andrianov,

Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
andrianovb@mail.ru


Acknowledgments:

This work was financially supported by the Russian Science Foundation project № 22-24- 00727.

Annotation:

Neoseiulus californicus is widely used as an effective biocontrol agent of spider mites. In this study, the complete mitochondrial genome sequence of N. californicus was determined using Oxford Nanopore sequencing technology. The complete mitochondrial genome is 21,318 bp in length and contains 13 protein-coding genes, 2 ribosomal rRNA genes and 22 transfer RNA genes. Its AT content is 78.4%. All start and stop codons of the protein-coding genes are canonical, except for the missing stop codon for the cox3 gene. The control region was polymorphic in length between the sublines of N. californicus due to variable number of direct repeats. The mitogenome presented in this paper contributes to the study of the genetic structure of N. californicus biocontrol populations.

DOI: 10.21684/0132-8077-2023-31-2-283-288

Bibliography:

Akyazi, R. and Liburd, O. E. 2019. Biological Control of the Twospotted Spider Mite (Trombidiformes: Tetranychidae) with the Predatory Mite Neoseiulus californicus (Mesotigmata: Phytoseiidae) in Blackberries. Florida Entomologist, 102: 373–381. https://doi.org/10.1653/024.102.0217

Bernt, M., Donath, A. and Jühling, F. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69: 313–319. https://doi.org/10.1016/j.ympev.2012.08.023

Cameron, S. L., Johnson, K. P. and Whiting, M. F. 2007. The mitochondrial genome of the screamer louse Bothriometopus (Phthiraptera: Ischnocera): effects of extensive gene rearrangements on the evolution of the genome. Journal of Molecular Evolution, 65: 589–604. https://doi.org/10.1007/s00239-007-9042-8

Dermauw, W., Vanholme, B., Tirry, L. and van Leeuwen, T. 2010. Mitochondrial genome analysis of the predatory mite Phytoseiulus persimilis and a revisit of the Metaseiulus occidentalis mitochondrial genome. Genome, 53: 285–301. https://doi.org/10.1139/G10-004

Emms, D. M. and Kelly, S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology, 20: 238. https://doi.org/10.1186/s13059-019-1832-y

Garesse, R. and Kaguni, L. S. 2005. A drosophila model of mitochondrial DNA replication: proteins, genes and regulation. IUBMB Life, 57: 555–561. https://doi.org/10.1080/15216540500215572

Glinushkin, A. P., Yakovleva, I. N. and Meshkov, Y. I. 2019. The impact of pesticides used in greenhouses, on the predatory mite Neoseiulus californicus (Parasitiformes, Phytoseiidae). Rossiiskaia Selskokhoziaistvennaia Nauka, 3: 32–34. https://doi.org/10.31857/S2500-26272019332-34

Jeyaprakash, A. and Hoy, M. A. 2007. The mitochondrial genome of the predatory mite Metaseiulus occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) is unexpectedly large and contains several novel features. Gene, 391: 264–274. https://doi.org/10.1016/j.gene.2007.01.012

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H. and Phillippy, A. M. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research, 27: 722–736. https://doi.org/10.1101/gr.215087.116

Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35: 1547–1549. https://doi.org/10.1093/molbev/msy096

Manni, M., Berkeley, M. R., Seppey, M., Simao, F. A. and Zdobnov, E. M. 2021. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Molecular Biology and Evolution, 38: 4647–4654. https://doi.org/10.1093/molbev/msab199

McGregor, E. A. 1954. Two new mites in the genus Typhlodromus (Acarina: Phytoseiidae). Bulletin of the Southern California Academy of Sciences, 53: 89–92.

Saito, S., Tamura, K. and Aotsuka, T. 2005. Replication origin of mitochondrial DNA in insects. Genetics, 171: 1695–705. https://doi.org/10.1534/genetics.105.046243

Sanchez, N. E., Greco, N. M. and Cedola, C. V. 2008. Biological Control by Neoseiulus californicus (McGregor) (Acari: Phytoseiidae). In: J. L. Capinera (Ed.). Encyclopedia of Entomology. Springer, Dordrecht, pp. 493–495. https://doi.org/10.1007/978-1-4020-6359-6_319

Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S. and Morgenstern, B. 2006. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Research, 34 (suppl_2): W435–W439. https://doi.org/10.1093/nar/gkl200

Xin, T., Que, S., Zou, Z., Wang, J., Li, L. and Xia, B.

2016. Complete mitochondrial genome of Euseius nicholsi (Ehara et Lee) (Acari: Phytoseiidae). Mitochondrial DNA, 27: 2167–2168. https://doi.org/10.3109/19401736.2014.982609

Zhang, B., Havird, J. C., Wang, E., Lv, J. and Xu, X. 2021. Massive gene rearrangement in mitogenomes of phytoseiid mites. International Journal of Biological Macromolecules, 186: 33–39. https://doi.org/10.1016/j.ijbiomac.2021.07.011

Zheng, S., Poczai, P., Hyvönen, J., Tang, J. and Amiryousefi, A. 2020. Chloroplot: An Online Program for the Versatile Plotting of Organelle Genomes. Frontiers in Genetics, 11: 1–8. https://doi.org/10.3389/fgene.2020.576124